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Despite their visual appeal, spiral tilings have attracted only a small number of 
mathematical papers since they were first mentioned by Voderberg [1] .  Of interest in 
FIGURE 1 are the five spiral arms emanating from the center. Indeed, in their seminal 
work on tilings and patterns [2], Griinbaum and Shephard leave open the existence of 
spiral tilings with any odd number of arms beyond three. We shall demonstrate 
techniques for constructing spiral tilings with any odd number of arms. Together with 
Goldberg's technique to construct even-armed spiral tilings [3], this means that we can 
produce spiral tilings with any number of arms. 

F I G U RE 1 

A five-armed spiral tiling with the arm separators highlighted and their end-points shown 
as stars . 

Loosely speaking, a spiral tiling is a tiling by congruent polygons that has a spiral 
appearance. As Griinbaum and Shephard point out, however, it can be tricky to define 
a spiral tiling more precisely. Previous writings on the subject either give no definition 

3 3 9  
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[ 1 ,  3, 4, 5, 6, 7], or mention a definition so broad that it includes even the checker­
board tiling by congruent squares [2]. 

Preliminaries 

Rather than attempt to provide a general definition of spiral tilings , we shall define 
one large class of tilings by congruent non-convex polygons whose spiral nature 
follows from the definition. This class includes Voderberg's tiling, Griinbaum and 
Shephard's remarkable tiling [2, frontispiece], most of the spiral tilings produced by 
Goldberg's method (including many samples with any even number of arms), and, we 
believe, most of the other spiral tilings in the literature. 

First, we clear up a matter of terminology. The terms vertex and edge can each 
refer to two different things in discussions of tilings by polygons [2]. In particular, 
vertex could refer either to a vertex of the tiling (i . e . ,  a point where three or more tiles 
meet) or to a vertex of a polygon (i . e . ,  a comer) . The term edge can refer to the 
curves that connect either type of vertex. Following Griinbaum and Shephard, we will 
use the term "vertex" for a point where three or more tiles meet, and "edge" for a 
curve in the tiling that connects such vertices .  Each edge of a tiling is common to 
exactly two tiles. 

To motivate the definition of our class of tilings , note that each tile in the spiral 
tiling in FIGURE 1 fits neatly into a cavity provided by neighbors in the same ann. 
Hence, concavity appears to be essential to the spiral appearance .  Specifically, arms of 
the tiling are separated by edges tl1at are not inside the convex hull of tiles that border 
them. Such edges are important: we say that an edge E of a tiling T by congruent 
simple polygons is a separating edge of T if the interiors of the convex hulls of the 
two tiles that have E in common are disjoint. FIGURE 1 shows the separating edges for 
the tiling in bold. The separating edges form simple curves that spiral out and separate 
the arms of the tiling. 

We shall use this idea to define our class of spiral tilings . Specifically, for any 
natural ·number n, we define a tiling T by congruent simple polygons to be a 
well-separated spiral tiling with n arms if there exist n semi-infinite simple curves 
(topological rays), called the arm separators of T, such that: 
1 .  the union of the arm separators of T is equal to the union of T 's separating edges; 
2 .  each pair of arm separators is disjoint, except possibly for a common endpoint; 
3. each arm separator winds infinitely often around its endpoint. 

There are five arm separators in the spiral tiling of FIGURE 1 ,  so this is a 
well-separated spiral tiling with five arms. The stars show where we might place the 
endpoints of the arm separators. Two of the stars have two arm separators emanating 
from them. Either of these two stars could just as well have been placed at any point 
along the arm separators that emanate from it. 

Construction 

Goldberg [3] provided a method to create spiral tilings with any even number of arms. 
He does this by taking an appropriate radially symmetric tiling, sliding one half-plane 
of the tiling with respect to the other half-plane, and modifying the result to give an 
aesthetically pleasing spiral tiling. The further we slide tl1e half-planes, the more arms 
we get in the result-but there is always an even number of them, due to symmetry 
considerations . We shall employ a similar sliding technique, but with an additional 
trick that yields an extra arm. 



MAT H E M AT I C S  M A G AZ I N E  V O L .  7 3 ,  N O .  5 ,  D E C E M B E R  2 0 0 0  3 4 1  
To illustrate our construction we shall use the reflexed decagon tile given by 

Simonds [6]. FIGURE 2 shows this tile . Note that the chord about which the decagon is 
reflected has length d, which is the diameter of the incircle of the original decagon; s 
denotes the length of one of its sides. In general, for any integer m greater than 2, we 
can construct Simonds' reflexed 2m-gon from a regular 2m-gon as follows . Consecu­
tively label the corners of the regular 2m-gon as A1 , . . .  , A2m ,  then reflect the sides 
A1 A2 , . . .  , Am_1 A, across the line A1 Am .  The m - 1 reflected sides and the 
unreflected m + 1 sides of the original 2m-gon make up the reflexed 2m-gon. 

edge length s _ .- - - "A; - -
_ ..... - - , / A4 A2 \ 

I \ 
I \ 

I \ 
I \ 

I_Aj ___ _ �n� �f !e_fl�c�oE ______ �L' chord length d 

216° 

F I G U RE 2 

A reflexed decagon, constructed by reflecting four consecutive sides of a regular decagon. 

We shall begin our construction with Simond's attractive, radially symmetric tiling, 
part of which forms the top half of FIGURE 3. We can consider this tiling to be the 
union of an infinite number of concentric decagonal annuli that surround a central 
tiled decagon. We will say that one of these annuli has size i if i tiles in the annulus 
meet each outer side of the decagon boundary of the annulus .  In the top of FIGURE 3, 
the i th annulus out from the center (marked with a star) of the tiling has size 2i . The 
annuli of sizes 4, 8, 12, and 18 are shaded to make it easier to see what happens as our 
construction progresses. 

To get our spiral tilings , we will use a cut, shift, and paste method to build spiral 
arms out of pieces of annuli of different sizes. If we only used annuli of even sizes, it 
turns out we would end up with an even number of arms. So we need some annuli of 
odd sizes . For i greater than 2, these annuli can be constructed from rows of 
decagons as in the previous case, and can be assembled to form the tiling part of 
which is shown in the bottom of FIGURE 3. This tiling has a singular regular decagon in 
the middle; the i th annulus out from this central decagon has size 2 i  + 1. We shall 
consider the singular decagon to be a degenerate annulus of size 1 .  In this bottom 
half, the annuli of sizes 5, 1 1 ,  15, and 19 are shaded. 

The trick is to use the central decagonal "hole" of FIGURE 3 to start an "odd" arm. 
We note that any individual annulus can be replaced by its reflected image so that 
each of the two tilings partially in FIGURE 3 is just one of an infinite set of comparable 
tilings . 

We will combine halves of FIGURE 3 to make a tiling with an odd number of arms.  
Each half-plane has some teeth sticking out beyond the half-plane and some tooth­
holes inside the half-plane . Each tooth or toothhole has as its outer border four 
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FIGURE 3 
Constructing a seven-arm spiral from half-annuli. 

contiguous sides of a regular decagon. Each half-annulus of size greater than one has a 
tooth added at one end and a toothhole indented into the other, forming an arch. If 
we reflect such an arch across a vertical line through the centers, then the tooth and 
the toothhole are interchanged. 

Now, as in Goldberg's construction, we have shifted the lower part of FIGURE 3 to 
one side (here, to the right) by ndj2, where n is the (odd) desired number of arms in 
the spiral tiling ( n = 7 in this case). In order to shove the two parts together to get a 
seven-armed spiral, we reflect some of the arches in each part. We do not reflect any 
of the arches of size less than or equal to n, as they already mesh wherever they meet 
another arch of size less than or equal to n; this occurs in the portion of the tiling 
between the two former centers of symmetry. (It is now safe to admit that we 
carefully planned our original orientations of the arches in one of the several ways that 
allow for this to happen!) For i larger than n, we reflect the arch of size i if doing so 
will make it mesh with the arch of size i - n in its final position; the fact that we 
shifted by nd/2 makes sure that these two arches have some combination of adjacent 
teeth and toothholes. Now we can push the halves together, and get the seven-armed 
spiral shown in FIGURE 4. 

It remains to show that the tiling we have constructed is a well-separated spiral 
tiling. To do so, we trace the separating edges through the construction. The 
separating edges are the decagons that form the boundaries of each annulus. These 
become corresponding half-decagons in FIGURE 3, if we ignore the edges along the 
teeth and toothholes for the moment. When we push the two halves of the tiling 
together, the edges along which the teeth and toothholes mesh are generally not 
separating edges, since they fall inside the convex hull of the tile that forms the 
toothhole. The one exception is the toothhole that was originally formed from the 
starred decagon in the bottom half of FIGURE 3. 
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FIGURE 4 
The completed seven-arm spiral showing the join of the two halves. 

Thus, the separating edges of the completed FIGURE are precisely those edges that 
were separating edges in the appropriate halves, including the four edges that are the 
vestiges of the central starred decagon of the bottom half of FIGURE 3. In other words, 
the separating edges are precisely the half-decagons that form the outsides of the 
arches. Therefore, by our construction, we can construct one arm separator for each j 
in the range l to n using the halves of decagons with side lengths js, (j + n)s, 
(j + 2 n)s, . . . . The arm separator corresponding to j = n does not share an endpoint 
with any other arm separator-it "dead ends" into the center point of the degenerate 
arch of size 2. Each other arm separator does share an endpoint (the one correspond­
ing to j = k shares an endpoint with the one corresponding to j = n - k, for k in the 
range l to n - l; these endpoints lie on the line between the center of the odd arches 
and the center of the even arches). Since each arm separator is a topological ray that 
winds infinitely often around its endpoint, and since the arm separators meet only at 
endpoints, the tiling is indeed a well-separated spiral tiling with n arms. 

Of course, similar constructions could be made with tiles other than reflexed 
decagons; any reflexed 2m-gon, with m at least 3, will do. Larger values of m tend to 
give rather more "convincing" spirals. Empirically, factors that appear to contribute to 
making a spiral tiling more "convincing" include having "more concave" tiles (i.e. , 
each tile taking up a smaller portion of the area of its convex hull) and having less 
sharp comers on the arm separators. Increasing m improves both of these factors. 

Extensions 

Many other odd-armed spiral tilings are possible, using similar construction methods 
but starting with different radially symmetric tilings. For example, we could use 
reflexed m-gons for odd m as in [5, 6, 7], yielding a rather different effect. Or we 
could use the "versatile" of Gri.inbaum and Shephard [4], as in FIGURE 5. 
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F I G U R E 5 

A five-armed spiral with versatiles. 

In all of these cases (except possibly for FIGURE 5), the corresponding one-armed 
spiral tiling was previously known. Thus, as one anonymous referee suggested, we 
could alternatively have constructed our odd-armed spiral tilings by starting from any 
of these known one-armed spiral tilings , pulling it into two halves ,  and shifting and 
reflecting as in our current construction. 

It is clear that some well-separated tilings can be altered to produce other tilings 
with a spiral appearance. Some examples appear elsewhere [2]; another is the tiling of 
FIGURE 6. The figure exemplifies two common techniques of altering a well-separated 
spiral tiling while maintaining much of the visual effect: removing some or all of the 
separating edges, and subdividing tiles .  By considering these techniques ,  we can arrive 
at a definition that appears to fit nearly all of the published spiral tilings to date . 
Specifically, we say that a tiling U by congruent simple polygons is a derived spiral 
tiling if for some well-separated spiral tiling T ,  the non-separating edges of U cover 
all the non-separating edges of T. 

One referee suggested another interesting line of analysis : to classify the well-sep­
arated tilings that can be constructed from reflexed regular polygons. The referee 
provided two striking tilings which are constructed from a different reflexed decagon, 
as shown in FIGURES 7 and 8. Here,  the polygon has a smaller indentation and 
therefore the visual spiral property is perhaps less marked. Defining a reflexed 
(n ,  k)-gon as a regular n-gon in which k consecutive edges are reflected, then some 
interesting questions to ask are : 
1 .  Which reflexed (n ,  k)-gons tile the plane, and which of those admit well-separated 

spiral tilings? 
2. For the odd armed-tilings constructed here, there is just one unbounded arm in 

one direction, while the others are unbounded in both directions; in general, how 
many arms of each type can be produced? 
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FIGURE 6 
A spiral tiling with 1 t reflexed decagons. 

FIGURE 7 
Five-anned spiral with a reflexed (10,3)-gon. 
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FIGURE 8 
Ten-armed spiral with a reflexed (10, 3)-gon. 

3. Is it possible to have a spiral tiling with an infinite number of arms? More 
generally, what are the topological constraints on the arms? 

4. For what n is there an n-armed spiral tiling in which all the separators are 
congruent? FIGURE 7 shows that such a 5-armed tiling is possible. 

The Inn at Honey Run in Millersburg, Ohio, displays a quilt, produced by Mary 
Miller and Ruth Schabach in the Amish style, but to the design of FIGURE 1 .  
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History records that in the 6th century B .C .  Thales of Miletus measured the height of 
the great pyramid at Giza by comparing its shadow to the shadow of his staff [3]. But 
there are differing versions of how he may actually have done this [5]. We will do 
some mathematical detective work to explore which version is more likely. 

The earliest version is attributed to Hieronymus (4th century B .C . )  by Diogenes 
(2nd century A.D.), who writes: 

· "[Thales] . . .  succeeded in measuring the height of the pyramids by observing the 
length of the shadow at the moment when a man's shadow is equal to his own 
height. "  

Thales here observes that when one object casts a shadow equal to  its height, then all 
objects cast shadows equal to their own heights .  In FrcuRE 1, this means that when 
H = S, then h = s. This "equal shadow" phenomenon allows one to measure the 
height of a tall object by measuring the length of its shadow along the ground. But 
Thales may have used another method. Plutarch (2nd century A.D.)  writes :  "Although 
the king of Egypt admired Thales for many things , he particularly liked the way in 
which he measured the height of the pyramid without any trouble or instrument ."  
Plutarch continues: 

"[Thales] set up a stick at the tip of the shadow cast by the pyramid, and thus 
having made two triangles by the sun's rays, he showed that the ratio of the 
pyramid to the stick is the same as the ratio of the respective shadows ."  
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This more general " ratio" method does not require the shadow of the stick to be 
equal to its length. In FIGURE 1 Thales computes H from the ratio H jh = S / s. It is 
likely that Thales knew about such ratios for legs of right triangles, since the Egyptians 
also had used such techniques in calculations involving pyramids, calling the method 
seked [5]. But neither Thales nor the Egyptians had a general themy of similar 
triangles . The innovation that Thales makes here is his observation that the sun's rays 
form a right triangle with the stick and its shadow, so that seked can be applied to this 
abstract right triangle . 

Both the equal shadow method and the ratio method are simple and elegant. The 
equal shadow method is particularly elegant because it requires no calculations-the 
length of the shadow is the height of the object being measured. But the shape of 
the pyramid presents several difficulties, the simplest being that at certain times 
Thales '  staff casts a shadow but the pyramid casts no shadow at all ! However, even 
when the pyramid does cast a shadow, there are still some practical problems to 
implementing these methods . Before we examine these problems we consider some 
recorded information about Thales himself, which may give us a hint about his view of 
theory and applications. 

Thales is reputed to have been the first to put geometry on a logical demonstrative 
basis [2]; textbooks on the history of mathematics refer to him as the first mathemati­
cian. Evidently, Thales was more interested in logic and proof than in practical 
matters . According to legend, he was once walking, intently gazing up at the stars , 
when he fell into a well . A woman with him exclaimed, "How can you tell what is 
going on in the sky when you can't even see what is lying at your feet?" So it appears 
that Thales fit the stereotype of a pure mathematician. But this image must be 
balanced with his association with the very practical Egyptians. In fact, Thales was one 
of the first Greeks to travel to Egypt, where it is said he learned geometry and also 
discovered many propositions himself. Egyptian geometry was a tool to serve practical 
needs which often required extreme precision. Egyptian monuments, still standing 
millennia later, are witnesses to the accuracy of their builders . Indeed the great 
pyramid is thought to have been aligned so perfectly north that its minute deviation 
from true north is attributed by some scientists to continental drift! So, did Thales 
actually measure the height of the pyramid or did he merely perform a beautiful 
thought experiment? 

Implementing the ratio method 

To use any shadow method one needs to know the length of the shadow as measured 
from the center of the pyramid. This cannot be done directly since the mass of the 
pyramid lies between the tip of the shadow and the center. It can be readily done, 
however, if the shadow is perpendicular to one side of the pyramid as shown in 
FIGURE 2a. In that case the length of the shadow to the center of the pyramid is simply 
the length of the shadow along the ground plus the length of half the side of the 
pyramid. If the shadow is skew, as in FIGURE 2b, then calculating the length of the 
shadow requires the use of the law of cosines ,  an idea not available to Thales .  

So all Thales needed to do was to visit the pyramid one day and wait for the 
moment when the shadow of the pyramid is perpendicular to one of the sides .  Let us 
see how this could happen. The pyramid is located at 30° N latitude and since the axis 
of the earth is tilted 23 .5° from the celestial pole , it follows that the pyramid is always 
located above the plane of the ecliptic . Thus the shadow of the pyramid can never lie 
on its south side . Let's first consider the case when the shadow lies north of the 
pyramid. FIGURE 3 shows the situation at noon. 
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(a) (b) 
FIGURE 2 

Top views of pyramid and its shadow. 

FIGURE 3 
Shadow of the pyramid at noon. 

During the course of a year, as the earth moves around the sun, the angle 1J in 
FIGURE 3 varies between -23.5° and 23.5°, so the angle a =  30°-1J varies between 
a = 30° + 23.5° = 53.5° at the winter solstice, and a = 30° - 23.5° = 6.5° at the 
summer solstice (see [4]). The angle a is called the zenith distance of the sun because 
it is the angle formed by the sun and the zenith. From early March to early October, 
the zenith distance of the sun is small enough at noon so that the pyramid casts no 
shadow at all-the sun is so high in the sky that all four faces are illuminated. This is 
because the faces of the pyramid rise at an angle of 51.8° to the horizontal (or 
90°- 51.8° = 38.2° from the vertical), so whenever the zenith distance of the sun is 
less than 38.2°, it will shine on all four faces. For the rest of the year, the shadow is 
perpendicular to the north side once each day. As FIGURE 3 indicates, this occurs at 
noon-when the line joining the centers of the sun and earth, the polar axis, and the 
axis of the pyramid all lie in the same plane. 

During the spring and summer months, the shadow is also perpendicular to the 
west face once in the morning, and to the east face once in the afternoon. To see this 
we need a three-dimensional view of the earth. In FIGURE 4, we have placed 
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FIGURE 4 
Pyramid and its shadow-a 3-dimensional view. 

coordinate axes with the origin at the center of the earth, the z-axis oriented along the 
polar axis, and the y-axis oriented so that the sun lies in the yz-plane. 

The sun's rays strike the xy-plane at the angle cf>. Thus the rays of the sun point in 
the direction 

S = -cos c/>j- sin cf> k. 

The circle of latitude at 30°N has radius Rcos30° = .f3R/2 ( where R is the radius of 
the earth). Thus the position vector of each point on this circle is given by the vector 
function 

C(8) = '! Rsin8i+ '! Rcos8j+ iRk 

where 8 is the angle shown in FIGURE 4. Note that C(8) is perpendicular to the sphere 
of the earth for every 8. The shadow falls east or west when it falls tangent to the 
latitude circle, that is, in the direction of 

T( 8) = C'( 8) = '! Rcos 8i -'I Rsin 8j. 

The axis of the pyramid points in a direction N normal to the surface of the earth, so 
at any point on the 30°N latitude circle, we can use N( 8) = C( 8 ). The shadow will fall 
along the tangent to the latitude circle when the tangent T, the normal N, and the 
rays of the sun S all lie in the same plane; that is, when T X N · S = 0. Calculating the 
triple product and simplifying we obtain the condition 

cos 8 = {3 tancf>. 

Thus the pyramid will cast a shadow perpendicular to its east or west face when it is 
located at a position corresponding to a value of 8 that satisfies this condition. For 
instance, at the summer solstice, when cf> = 23.5°, we get 8 == ±41.14°. This corre­
sponds to times of about 9:15 AM and 2:45 PM. As the summer progresses, these 
times will fall earlier in the morning and later in the afternoon, with increasingly 
longer shadows. At the equinoxes, when cf> = 0°, we have 8 = ±90°, so the shadow 
will be perpendicular to the west and east faces at 6:00 AM and 6:00 PM respectively 
-sunrise and sunset on these dates when day and night are equal in duration. It is 
easy to see that in the fall and winter, when cf> < 0°, at no time during daylight hours 
will the shadow be perpendicular to the east or west face. 
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Can the "equal shadow" method be used? 

Now suppose Thales was to use the "equal shadow" method. Having found the times 
when the shadow is perpendicular to the pyramid, he must now find arrwng these 
times "the moment when a man's shadow is equal to his own height. "  This moment of 
"equal shadow" can actually happen on at most four days in any given year, as we now 
show. First let us consider the north face .  If the shadow is perpendicular to the north 
face, then the length of the shadow of an object of height h is s = h tan a where a is 
the zenith distance of the sun at noon as in FIGURE 3. Thus we have the "equal 
shadow" phenomenon when a =  45°. During the course of a year a ranges from 6.5° 
to 53.5° and back to 6.5°, so it appears that a can equal 45° twice . But a changes in 
increments of approximately ± degree per day-actually about 9 4°/365.25 days 
=:: 0.26° per day. So a may be equal to 45° at most twice . However it is unlikely that 

a would ever exactly equal 45°, and the error could be as much as ± 0. 13°. Since the 
pyramids are approximately 480 ft high, this would result in an error of approximately 
2.3 ft. Given the precision of the Egyptians, this error seems rather high. 

Next, for the equal shadow phenomenon to occur at the east or west faces of the 
pyramid, the angle between T and S must be 45°. But then 

45o T · S  ' () ,�.. cos = I T II S I = sm cos '¥, 

so sin () 
= 1 /( J2 cos cf>). Since the shadow must also be perpendicular to the east or 

west faces we also have cos () 
= -./3 tan cf>, so 

1 = sin2 () + cos2 () 
= 

1 + 3 tan2 cf>. 
2 cos2 cf> 

Solving we get cos cf> = ± ..j1 /8 , so cf> =:: 20. 7° . (The other possible solutions for cf> do 
not apply here, since cf> takes on values between - 23.5° and 23.5°, and negative cf> 
corresponds to fall and winter when the pyramid does not cast a shadow perpendicu­
lar to its east or west face.) Thus there are two days in the year when the "equal 
shadow" phenomenon occurs on the east or west face-the early spring day and the 
late fall day when cf> =:: 20.7° . Again, just as in the case of the north face, it is unlikely 
that the "equal shadow" and the "perpendicular shadow" phenomena will coincide 
precisely on these days , so some imprecision is unavoidable here too . 

In any case it seems like a lot of trouble for Thales to hang around the pyramid, 
possibly for months, waiting for the propitious moment when the equal shadow is also 
perpendicular to a side . But the King said that Thales measured the height of the 
pyramids without any trouble . Could Thales have possibly used a different equal­
shadow method? One that could work on any day? 

Can the "equal shadow" method be salvaged? 

The main problem with implementing the "equal shadow" method is that the 
measurement of the shadow is obstructed by the mass of the pyramid. Another 
method Thales could have tried, which also involves "equal shadow," is suggested in 
the Project Mathematics video [1 ] .  The idea is to wait for the shadow of a man to 
lengthen by an amount equal to his height; at the same time the shadow of the 
pyramid will lengthen by an amount equal to the height of the pyramid (see FIGURE 5). 
This method is "dynamic" in the sense that it requires observation of the shadow over 
a period of time, whereas the first method is "static" in that it relies on observing the 
shadow at just one instant. 
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FIGURE 5 
Lengthening of the shadow. 

The important thing here is that this new method appears to avoid the problem of 
having to measure the shadow to the center of the pyramid. Indeed all measurements 
take place well away from the pyramid. So let us again see how Thales could 
practically implement this new method. Thales must visit the pyramid at a time when 
the tip of the shadow is away from the base of the pyramid and mark the location of 
the tip of the shadow. He must then wait for the shadow to lengthen. But Thales 
discovers, to his dismay, that the shadow doesn't simply lengthen as suggested in 
FIGURE 5, it also moves as shown in FIGURE 6. This presents a new problem, to measure 
the length of the new longer shadow one must use the center of the pyramid as a 
reference point. But now we are faced with the same situation as before: the mass of 
the pyramid obstructs our measurement. So this method isn't really going to work 
either. 

FIGURE 6 
Lengthening of the shadow-top view. 

What if Thales were to simply connect the tip of the original shadow with the tip of 
the longer shadow and wait for that distance to equal the height? He would now have 
a distance on the ground equal to the height. This situation is illustrated in FIGURE 7. 
Triangles ABC and abc are similar, as are triangles DAB and dab. From this it is 
easy to see that hI H = ab I AB = be I BC; since we chose h = be it follows that 
H = BC. Thus the height of the pyramid can be determined by measuring BC along 
the ground. This method works, but Thales could not possibly have used it, since he 
had no knowledge of the proportionality of general similar triangles. 
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A method using similar triangles. 

Conclusion 

If Thales had used the "equal shadow" method, he would have had to do so on one of 
only four days in a year, and then only obtained a rough approximation. It seems more 
likely that he used a "ratio" method. This he would have had an opportunity to do at 
least once a day for most of the year, and as often. as twice on a good day. 

Did Thales actually measure the height of the pyramid at all? It is impossible to say 
for sure, but the idea of measuring the height of such a tall object using only its 
shadow is so beautiful and striking that it overshadows any of its practical applications . 
This anecdote survives because it encapsulates a great idea that continues to delight 
and inspire . 
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The solitaire army in new circumstances 

Peg Solitaire soldiers-pegs for short-move on a plane square lattice . A peg P can 
jump over a horizontally or vertically neighboring comrade Q onto a free square, 
removing Q at the same time. The game starts with a configuration of pegs-a 
solitaire army-and the aim of the moves is usually to obtain another configuration 
with a prescribed property, e .g . ,  one with a unique peg on a fixed square, or with a 
peg on a given remote square. For the essentials on Peg Solitaire see the definitive 
book Winning Ways ([2], Chapter 23), where problems of both types are treated in 
detail. Concerning a problem of the second kind, we have the following basic result of 
J. H. Conway (see [6], pp. 23-28; [2], pp. 715-717, 728; and [ 1]): No solitaire army 
stationed in the southern half-plane can send a scout into the fifth row of the northern 
half-plane, but an army of 20 pegs can send a scout into the fourth row. 

For the proof, to every square s of the plane assign a value p(s) as follows . Let u 
be the golden section, i.e . ,  u = ( 15 - 1) /2, so u + u 2 = 1 .  Fix a square s0 in the 
fifth row of the northern half-plane. For any square s, let p(s) = uk, where k is the 
Manhattan distance between s0 and s (this means that s0 and s are exactly k 
horizontal or vertical one-square steps apart). Define the potential of a set of squares 
as the sum of values of all squares in this set, and the potential of an army as the 
potential of the set occupied by that army. The potential of any army with a peg 
standing on s0 is at least 1. On the other hand, the potential of the infinite army 
occupying all squares of the (southern) half-plane is exactly l; we can compute it by 
observing that values in every column form geometric progressions with quotient u. 
The rule of moves implies tl1at no move can increase the potential; it follows that a 
finite army garrisoned in the southern half-plane cannot reach s0. This kind of 
reasoning will occur several times in the sequel; we call it the Conway argument . The 
remaining part of Conway's result can be shown simply by displaying how the army of 
20 should be deployed, and how the pegs should move (see below). 

In fact, this means that if the front line of a solitaire army looks to the north, then it 
can advance four rows and no more, just four units of distance both in the Euclidean 
and the Manhattan sense . Armies, of course ,  do not always fight under such plain 
circumstances. Their front line may look to the southwest, for example, in which case 
the target may be the corner square of the first quadrant. Or, the territory to be 
scouted may be the "half-encircled" first quadrant; then the army has two perpendic­
ular front lines, one facing north and one facing east. Or we may have two 
perpendicular fronts, one facing northeast and the other one northwest. FIGURE la 
shows an original northbound army; FIGURES lb-d show the other possibilities just 
mentioned. 

How far can the scouts be sent in cases (b), (c), and (d)? In what follows we answer 
these questions . The Conway argument provides upper estimates; we show that they 
are sharp in every case. We also prove a fact (stated in [2] without prooD concerning 
armies with a single "mounted man." We conclude with two problems about sending 
scouts into an "encircled ground" (cf. [9]) . 
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Solitaire armies in various circumstances. 

Troops and advances 
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The aim of traditional Peg Solitaire is to evacuate a special battlefield except for one 
square . For this aim, the method of packages and purges is recommended in [2]. A 
package is a configuration of pegs which, by an appropriate sequence of moves (a 
purge), can be removed to the last peg. A simple purge is displayed in FIGURE 2a. The 
numbers indicate the order of moves: peg 2 jumps (onto the square 5) in the second 
move and returns to its starting place in the fifth move. Exponents 2, 3, etc . ,  denote 
double, triple, etc . ,  jumps. 

:"ii: · ®  * * * (•) (•) 
0 0 ® 0 . · 0  CD 
CD 0 (£) CD 0 0 (lJ . ® (lJ 

(a) (b) 0 c ) d 

* * * * 
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0 (e f g) h) @ 
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· 0  @ ® ® ® 0 0 . 

0 0 (lJ 0 ® j) 0 CD 
0 (!:) 0 @ i ® k) 
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Small troops, small advances. 

If the goal is to reach some remote square, instead of packages and purges we can 
apply the similar method of troops and advances . A troop is, in fact, a package , a 
member of which can reach a given distant square by a suitable sequence of moves 
(an advance). Here we list and display the troops to be deployed in order to send 
scouts as far as possible in cases (b), (c), and (d) of FIGURE 1. The smallest troop and 
advance are a pair of adjoining pegs (a patrol) and a single move . The patrol and 
other small troops are shown in FIGURE 2b, 2c, and 2d, where asterisks denote the 
square to be reached. We shall also operate with stronger, elite troops .  They are given 
fitting names: laser guns (of length 5 and 4 in FIGURE 2e and 2f; their name comes 
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from [5]), and heavy guns (of length 4 in FIGURE 2g and 2h). Guns of arbitrary length 
are possible and sometimes even necessary; note that the troop on FIGURE 2c is a laser 
gun of length 2 and a heavy gun of length 1 at the same time. 

Squares marked with dots also must be free of pegs "when the guns begin to 
shoot ." Furthermore, we call troops in FIGURE 2i, 2j, and 2k a mustang , a tomahawk , 
and a halberd, respectively. 

We can compose bigger troops from smaller ones. FIGURE 3a shows that a tomahawk 
consists, in fact, of units 1 and 2, a laser gun, and a block . The squares s 1 and s2 can 
be respectively occupied by the advances of unit 1 and unit 2, then a single jump of 
the peg on s2 completes the operation.  We denote this combined movement by the 
sequence 12]. FIGURE 3b shows a mortar of length 6, composed from three blocks 
and a tomahawk. The record of its advance is 1234 J 3 , where the exponent indicates 
that the peg on s 3 concludes the operation by a triple jump. Mortars also may be as 
long as needed. 

* * 81 82 1 * 
* 81 

81 a) 81 
83 82 . 82 

82 
3 83 

83 1 84 
84 2 4 

4 
(b) (c) (d) 
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Organizing big troops from small ones. 

The troop in FIGURE 3c sends a scout into the fourth row (of northern latitude), 
proving thereby the second part of Conway's result. Now the advance is 123 J 2. FIGURE 
3d represents a centaur, a special troop we shall deploy soon. Its action is 1234] 3. 
This notation may seem ambiguous, but the aim of the whole operation usually 
resolves what is left undetermined. For example, in the course of the Tomahawk 
Action (FIGURE 3a) block 2 moves only toward the northwest. 

Pebbling and the skew front 

Pebbling , a game introduced by M .  Kontsevich ([3] , [4] , [7] , [8]) is played on a square 
lattice in the first quadrant. Starting with one pebble in the comer square, each move 
consists of replacing a pebble by two, one on the north and one on the east 
neighboring square (FIGURE 4a). Kontsevich's problem was whether it is possible to 
clear the southwest triangle of 10 squares by pebbling moves (FIGURE 4b). This 
problem admits an "inverse" fonnulation as follows : Change the rule of moves so that 
every move undoes a possible move of ordinary Pebbling: one of the two pebbles lying 
as in FIGURE 4c advances south or west, and the other is removed from the field. 
Suppose that all squares of the first quadrant are occupied by a pebble army except 
for the 10 in the comer. Now the problem is whether this army is able to send a scout 
to the comer square . Defining the value function q by q(s 0 ) = 1 for s0 the comer 
square, and q(s ) = 2-k if the Manhattan distance between s and s0 equals k ,  we can 
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apply the Conway argument to prove that the pebble army cannot reach s 0 . Indeed, 
the potential of the entire quadrant is 4, that of the 10-square triangle is 13/4, and 
hence the potential of the given pebble army is 3/4, which is less than q(s 0 ). 

0 
QQ 0 

( a) 
0 

(b) 
F I G U R E  4 

Pebbling and unpebbling. 

QQ 
0 QQ 

( c ) 

What if, instead of pebbles, our army is recruited from tough solitaire pegs? Then, 
in order that the potential should not increase by (solitaire) moves, we must return to 
the old value function p(s ) = uk. In this case, the Conway argument shows that an 
army whose skew front is at Manhattan distance 7 from s 0 cannot reach s0 . Indeed, 
as uk + uk+ 1 + . . .  = uk-2 , the potential (counted by columns) of such an army is 
8 u5 + u6 + u 7 + · · ·  = .867 · · ·  < 1. If we reinforce the army with an additional 
(skew) line of pegs, reducing to 6 the distance between the front line and s 0 , then its 
potential grows to 7u4 + u3 = 1 .257 . . .  > 1 (FIGURE 5a). 
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Scouting the southwestern half-plane. 

Thus, sending a scout at distance 6 from the skew front-line is not prohibited by the 
Conway argument. It actually can be done by a joint endeavor 123 ]] of two centaurs 
and a mustang; see FIGURE 5b . 

We can extend the battlefield to the whole square plane without really changing the 
situation . If s 0 is at distance 7 from the skew front then the potential of the infinite 
army occupying all the squares on and behind this front equals 

8 u5 + u4 + 2( u 7 + u9 + . . .  ) = 8 u 5 + u4 + 2 u6 = . 9 78 . . .  < 1 .  
This means that pegs stationed outside the first quadrant cannot provide essential help 
to their comrades within that quadrant. 

We can also restrict the battlefield, for instance to the 8 X 8 chessboard. Let s 0 be 
the lower left corner square ("a1" in chess notation). Setting the skew front at 
distance 6 from s 0 , the Conway argument now proves that no scout can reach s 0 • 
However, if the distance is 5, that is, the front-line is the "a6-fl diagonal," then s0 is 
accessible for a troop of 19 pegs , namely the one consisting of a laser gun, a heavy 
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gun, and a halberd, displayed on FIGURE 5c, by the advance 123 JJ. The number 19 
cannot be decreased. We omit the simple but tedious proof we know of the latter fact, 
based on the Reiss theory of Peg Solitaire ([2], pp. 708-710). 

Two fronts, hor i zontal and vert ical 

Now suppose we have the first quadrant to be reconnoitered; all other squares may be 
held by the solitaire army. The square at distance 5 from both fronts-square (5, 5) in 
short-can be reached by troops we introduced earlier as indicated on FIGURE 6a 
(cf. FIGURE 3). The advance is 1234'4'' 56r ; here 4' convelis 4" into a tomal1awk. 

, 
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4 "  82 
s, s, s, s, So * 

-"'- .,_ 
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F I G U R E 6 
Scouting the first quadrant: possible and impossible . 

Concerning square (6, 6), we must slightly modify the Conway argument . First let 
s 0 = (6, 6). Then the potential of our army equals 2 0' - 0' 8 (the sum of potentials of 
the occupied half-planes minus the potential of the third quadrant) which exceeds 1 ,  
proving thus nothing. Observe , however, that in order to  reach (6, 6), we have to  send 
a patrol onto squares (4, 6) and (5, 6) to perform the final jump (FIGURE 6b). Letting 
s 0 = (5, 6), the potential of the patrol is 1 + 0' , while that of the all army equals 
1 + 0' - 0' 7 , showing that (6, 6) is inaccessible. 

What about sending a scout onto (n, 5), where n > 5 ? For this aim, tricks like the 
one applied for the case (5, 5) can be devised for n = 6, 7, 8, 9 .  Foliunately, an 
ingenious observation in [5], which we call the Eriksson-Lindstrom lemma, makes 
them unnecessary. This lemma enables us to show: In the case of two fronts , one 
horizontal and one vertical, a scout can be sent onto (n ,  5), for any positive integer n .  

Paitly following [5], we call an army, holding a finite pali of some quadrant plus a 
single square adjacent to the border of this quadrant, a quasi-quadrant with outpost . 
Now the Eriksson-Lindstrom lemma says : For any positive n there exists a quasi­
quadrant with outpost at distance n from the comer square of the quasi-quadrant , 
which can send a scout onto the square marked by an asterisk in FIGURE 7. The same 
figure also illustrates the proof for the case n = 7. 

Here the heavy guns 1, 2, . . .  , 6 complete the laser guns 7, 9 ,  1 1 ,  . . .  , 17 by an 
additional square each. Then the echelon of all laser guns 7, 8, 9 ,  . . .  , 18 produces the 
staircase s 7 , s 8 ,  s 9 , . . .  , s 18 .  The heavy gun 19 sends a scout onto s 19 , which finishes 
the action by a twelvefold jump. This method works for n � 3; the cases n = 1 and 
n = 2 are very simple . 
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A special quasi-quadrant with outpost at distance 7 from the corner square. 

Substituting "half-plane" for "quadrant" in the above definition, we get the notion 
of a quasi-half-plane with outpost . FrcuRE 8 demonstrates the surprising fact that a 
sufficiently large quasi-half-plane with outpost on an arbitrary square can send a scout 
onto any square at distance 5 from the border line . Here 1 and 4 are quasi-quadrants 
with outposts , the Eriksson-Lindstrom lemma guarantees that they can send pegs to 
s 1 , resp . s4 , and the protocol of the advance is 12] 34] 2 . As a consequence, we obtain 
the promised result on the accessibility of (n ,  5) for arbitrary n .  
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F I G U R E 8 

A quasi-half-plane with outpost sends a scout into an arbitrarily remote square of the nmthern 
fifth row. 
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Combining FIGURE 7 and 8 we see that the size of the quasi-half-plane with outpost 
we need for sending a scout onto the fifth row grows very fast with the distance 
between the outpost and the target square . An easy calculation shows that, for a 
distance of 67, we need an army of more than one million pegs ! 

A solitaire army with a solitary mounted man 

In [2], p. 717, one reads: " . . .  we once showed that if any man of our army is allowed 
to carry a comrade on his shoulders at the start, then no matter how far away the extra 
man is, the problem [of sending a scout from the southern half-plane to a place in the 
fifth row of the northern half-plane] can now be solved. "  As we could not find any 
proof in the literature, we include one here . 

Suppose there is a mounted man (i .e . ,  two pegs stationed in the same square) in the 
southern half-plane . While both of them are there, this square cannot be jumped over, 
but the two pegs ,  one by one, can make legal jumps from there . Notice that a column 
of even length containing a mounted man one square apart from its end can be used 
as a laser gun: the extra man serves as the trigger. FIGURE 9 a  and 9 b  are slightly 
different; they show how to reach the fifth row when the distance of the mounted man 
from the border of the two half-planes is even or odd, respectively. The place of the 
mounted man is marked by a double square . The corresponding suitable advances are 
12J 3J45J6r and 123J45J6r . Troops 4 and 6 are appropriate quasi-quadrants with 
outposts, sending one man each into the first northern square of the column, 
containing the mounted man. 
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82 
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1 2 
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\ \ I 

' ' , 
( a) (b) 

F I G U R E 9 
Scouting with a single mounted man. 

Do not think, however, that the only possibility of reaching the fifth row is in the 
column of the mounted man. On the contrary: For every pair C 1 , C 2 of columns there 
exists a square s 1 E C 1 in the southern half-plane such that a properly deployed troop 
in the southern half-plane with one mounted man in s 1 can send a scout onto the 
northern fifth square of C 2 .  Instead of the lengthy full proof, we illustrate this fact in 
FIGURE 10 through a typical case. 
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How a mounted man in a given column promotes scouting in another column. 

As FIGURE lOa shows, it is enough to see that a suitable troop in the area 6 can send 
a peg onto the square s 2 ;  then a scout reaches the target square by the advance 
12J3J45J6r. FIGURE lOb displays the suitable troop (involving several mortars) 
which sends a peg onto the desired square by 123' 3"]45] 5. One might worry that 
there is not enough space to deploy the troop in FIGURE lOb in the area marked by 6 in 
FIGURE lOa. However, we can guarantee the needed space in FIGURE lOa by replacing 
the guns 1, 3, and 5 by longer ones (of length 16, 18, and 12, respectively), and the 
quasi-quadrant with outpost (i.e . ,  the troop 4) by a similar one whose outpost is at 
distance 19 from the comer. 

The case of two skew fronts 

Suppose that the solitaire forces are in the position of FIGURE ld. Again, denote by 
(i , j) the square whose Manhattan distance from the left and right front lines equals i 
and j. FIGURE l la shows that the square (7, 7) marked by an asterisk is accessible : the 
two troops are exactly' those of FIGURE 5b and 5c. 
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82 
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* 

( a (b) 

F I G U R E 1 1  

The maximal achievement in the case of two skew fronts . Patrols in encircled ground. 
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We prove that (8, 8) is inaccessible . In order to reach (8, 8), our army must send a 
patrol either to squares (7, 7) and (6, 6), or to squares (9, 7) and (10, 6). In the first 
case, let s0 = (7, 7) and p(s 0 )  = 1; then the potential of the whole occupied area is 
15a 5 + 2( a 7 + a 9 + . . .  ) = 15a 5 + 2 a 6 = 1 .464 . . .  , while the potential of the patrol 
equals 1 + a =  1 .618 . . . showing that the patrol cannot be sent to the desired place. 
The second case is even worse: for s 0 = (9, 7), the potential of the patrol is the same, 
while that of the army will be 8a 5 + a 6 + 9a 7 + a 8 = 1 . 108 . . . . The squares (n, 7) 
are also inaccessible if n > 7: for (9, 7) the preceding trick works , and the original 
Conway argument is applicable for n > 9 .  In summary: The squares that can be 
reached from two skew fronts are those at Manhattan distance no more than 6 from at 
least one front line , and the square (7, 7). 

Scouts in encircled ground 

Finally, suppose that a quadrilateral area of size n X n with horizontal and vertical 
sides is fully encircled by a solitaire anny, where n is odd. What is the maximal n such 
that a scout can be sent to the central square of this quadrilateral? Write nmax for this 
n. We already know that nmax ;::: 9. The Conway argument provides the upper limit 
nmax < 15. Suppose nmax = 13, and consider the last patrol, a member of which jumps 
into the centre . The members of this patrol are produced by two other patrols , i .e . ,  by 
four pegs . They can occupy five essentially different positions ;  a sample is displayed 
on FIGURE l ib .  Placing s 0 suitably, the summary potential of the army turns out to be 
less than that of the four pegs , contradicting the hypothesis . In our example the 
potential of all squares out of the 13 X 13 quadrilateral (i . e . ,  of four half-planes minus 
four quadrants) equals 

a +  a 3 + 2 a 2 - 2a 9 - 2a 11 
= 1 .581 . . .  , 

less than the potential of the two patrols : 1 + a =  1 .618 . . . . Hence 9 :::;; nmax :::;; 1 1 ,  so 
nmax is either 9 or 1 1 .  For quadrilaterals with skew sides, a similar question may be 
raised, and it can be treated in a similar manner. Let nmax be the number of squares 
constituting a diagonal of the maximal quadrilateral in this case. Then we obtain that 
nmax equals either 13 or 15. In both cases, the exact value of nmax remains unknown. 
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On entering a house of mirrors at a circus, you find yourself surrounded by reflected 
images of yourself. If the house is well lit and has walls completely covered with 
mirrors , some intriguing questions arise :  Is there a location from which you cannot see 
any reflections of yourself? Or, better yet, is there a location at which you disappear 
from everyone's view? 

We will represent people and lights mathematically by points ; the house of mirrors 
will be represented by a two-dimensional polygonal room whose sides all act as 
mirrors . Light rays travel along straight lines and reflect off the walls so that the angle 
of incidence equals the angle of reflection. Any light ray that strikes a vertex (i . e . ,  a 
boundary point without a tangent line) is considered to end there . 

We will call a point invisible if it has the property that any light ray that passes 
through it in any direction never returns to that point. All other points are said to be 
visible . Physically, an invisible point acts like the opposite of a black hole . If an 
invisible point exists in our house of mirrors , then the answer to our first question is 
yes, since for you to see a reflected image of yourself, light must travel from yourself 
back to yourself. 

Invisible points can be found at vertices of triangles and squares. Then the triangles 
or squares can be "tiled" together to form polygonal rooms with interior invisible 
points (see [1 ]  and [2]). Ian Stewart in [3] and [4] gives an entertaining account of 
these results . For further illumination methods and problems, see [5] and [6]. 

In this article we will prove the existence of invisible vertices for a general polygonal 
region, and then use the tiling technique in [2] to construct more examples of 
polygonal rooms with interior invisible points . We will also partially classify invisible 
points and pose some new questions . 

We start with the main result. 
THEOREM 1. Let a polygonal room P have vertices at A, A1 , A2 , . . .  , A 111 taken 

counterclockwise, with respective interior angle sizes x, x 1 = n1 x ,  x2 = n2 x ,  . . .  , X 111 = 

nm x ,  measured in degrees , where n1 , n2 , . . .  , nm  are positive integers . If x divides 90, 
then the vertex A is invisible . 

Proof Let P be a polygonal room as in the statement of the theorem. We will 
measure all angles mod 2 x . Since 2 x  divides 180 and all the interior angles of P sum 

364 
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to a multiple of 180, there is an even number of angles that are congruent to x mod 
2 x ; all the remaining angles are congruent to 0 mod 2 x . 

Now assume that a light ray leaves vertex A at an angle e ,  where 0 < e < x is 
measured counterclockwise from AA1 as shown in FIGURE 1. Let side AA1 be assigned 
the symbol ± e. Inductively assign either the symbol ± e or the symbol x ± e to each 
side successively, according to the following rule : Let side A ; - I A; be assigned either 
± e or x ± e. Then side A; A ; + 1 receives the same symbol if x; = 0 mod 2 x ;  
otherwise, A; A i + l receives the other symbol. (See FIGURE 2.) Notice that, since there 
is an even number of interior angles congruent to x mod 2 x, the last side Am A must 
be labeled x ± e .  

A,. 

A 

F I G U R E 1 

An exiting light ray. 

x ± O ± 8  

x .  
'r-; 

± 0  ± 8  A ;  
F I G U R E  2 

(a) if X ; = x mod 2 x ;  (b) if X ; = 0 mod 2 x . 

If the initial ray from A hits the interior of side A; A i + l , which is labeled ± e say, 
then there must be an even number of interior angles of P congruent to x between 
A and A; (taken counterclockwise), so the light ray must reflect off side A; A i + l at an 
angle congruent to ± e. Similarly, if A; A i + 1 is labeled x ± e, the light ray must 
reflect at an angle congruent to one of these angles, since then there is an odd 
number of interior angles of P congruent to x in between. 

Now, by induction on the number of segments in the path of the light ray, we show 
that the light ray reflects off each side according to its label. This is true for s = 1 by 
the preceding argument. Suppose it is true for s = k and take the (k + l)•t segment of 
the path, which might appear as in FIGURE 3. There must be then an odd number of 
interior angles of P congruent to x between Aj and A1 and hence the light ray must 
reflect off side A1 A1+ 1 at an angle congruent to x ± e.  The other cases are similar, 
and the induction is complete . 
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We conclude that, if the light ray returns to A, then it does so at one of the angles 
± (} measured from AA1. Since 0 < (} < x, the ray must return to A at the same angle 
(} that it left. The light ray can do this if it hits some side at 90°. Thus either ± (} = 90 
mod 2 x  or x ± (} = 90 mod 2 x . In either case, this forces x to divide (}, which is 
impossible. • 

± 6  ± 6  
± 6  

F I G U R E  3 

x ± 6 

A portion of a light ray path. 

If the conditions of the theorem are satisfied, then the only allowable integer values 
for x are the divisors of 90. For example, each of the following polygons has an 
invisible vertex at A: 

A 
x = 45 

(a) 

4� l A 

x = 90 
(h) 

F I G U R E  4 
Invisible vertices. 

x =  15 
(c) 

It is also worth noting that, in a polygonal room whose sides are all either horizontal or 
vertical, every vertex of interior angle size 90° is an invisible point. 

Building larger rooms If P is a polygonal room as in Theorem 1, with vertex A a 
specified invisible point, then we can build a larger polygonal room Q with interior 
invisible points by using copies of P as tiles, such that the interiors of common edges 
become interior to Q. (See, e .g . ,  FrcuRE 5.) In addition, any two tiles sharing a 
common edge must be mirror images of each other in that edge . The tiles must not 
overlap and all vertices labeled differently from A in P must remain vertices in Q. 
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nrn 
< . � . > v v  

F I G U R E  5 

Room with invisible points . 

Because the tiles are mirror images of each other, a light ray path between any two 
points labeled A in Q would fold up to a corresponding light ray path from A to itself 
in a single copy of P. The fact that the vertices in P different from A remain vertices 
in Q guarantees that the first light ray path must avoid these vertices and hence that 
the (folded up) light ray path in P avoids all vertices of P different from A. But this 
then produces a light ray path from A to A in P, which is impossible . We have 
proved the following corollary to our first theorem: 

COROLLARY. If we build a bigger polygonal room Q using copies of P as tiles as 
described above, and such that all vertices of P different from A remain vertices in Q, 
then a light ray cannot travel between any two points labeled A in Q .  In particular, all 
points labeled A in Q are invisible points in Q. 

For example, using the polygon in FIGURE 4(a) as a tile, we can construct the 
polygonal room in FIGURE 5, with three invisible points labeled A1 , A2 , and A3 • 

Hiding places We can now answer our second question, about points invisible from 
anywhere in the room. The answer obviously depends on the placement of the lights 
in the polygonal room. Referring to FIGURE 5 again, if lights are placed at A1 and A2 , 
then, by the corollary, light rays from these points never reach A3 • Thus, if you stand 
at A3 you and your reflections disappear completely from view, as if you had stepped 
into a closet. 

More examples appear in FIGURE 6, in which an isosceles right triangle is used as 
a tile. If lights are placed at A1 , A2 , A3 , and A4 , then at A5 , you would disappear 
from view. 

A2 I ( 

··�� 
A, � I A3 

A3 

�. � 
Ll 

A4. A4 
F I G U R E  6 

Rooms with invisible points. 
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Triangular rooms We do not know whether the condition of Theorem 1 is a 
necessary condition for a vertex to be invisible, even for triangles .  Observe, too, that 
the theorem fails if go is replaced by 180. For example, if A is any vertex of an 
equilateral triangle, then A is a visible point since a light ray along an altitude from A 
reflects back to A. For certain special cases, however, the condition of Theorem 1 is 
necessary and sufficient. In what follows , m(L Y )  denotes the degree measure of the 
angle at the vertex Y. 

THEOREM 2 .  If P is a right triangle ABC, with right angle at B and m(L A) = x, 
then A is invisible if and only if x divides go. 

Proof If go = nx , then m (L A) = x ,  m (L B) = go = nx , and m (LC) = 
(n - I) x and A is an invisible point by Theorem 1 .  If x does not divide go (say k � 1 < x < 9k0 with k � 1 ) then A is visible using a light ray leaving A at an 
angle (} = go - kx , as shown in FIGURE 7. 

c 

F I G U R E 7 

A light ray path. 

As the reader can easily check, such a light ray path is possible and alternates 
between AC and AB with the reflecting angle successively increasing in size by x .  
After exactly k + 1 reflections, the ray hits at goo and reflects back to A. • 

THEOREM 3. If t:.ABC is isosceles with BA = BC and m(L A) = m(L C) = x ,  then 
A is invisible if and only if x divides go. 

Proof If x divides go (say go = nx) and m(L A) = m(LC) = x, then m(L B) = 
180 - 2 x = (2n - 2) x with n � 2 and A is an invisible point by Theorem 1 .  

I f  x does not divide go, then as before let k = l 9x0 J and let a light ray leave A at an 
angle (} = go - kx from AC. After k reflections, the ray will hit either AC or BC at 
goo and return to A. • 

The following result holds for arbitrary triangles :  
THEOREM 4. If 0 is an invisible point of t:.ABC, then 0 must be a vertex . In 

addition ,  t:.ABC must be either right-angled or obtuse, and 0 must be the vertex of 
smallest angle . 

Proof Let 0 be an invisible point of triangle ABC. If 0 is not on the longest side, 
say AB , then we can drop a perpendicular from 0 to the interior of side AB . If 0 is 
in the interior of side AB , then we can drop a perpendicular from 0 to the interior of 
the nearest side . In either case, 0 is visible . 

This means that 0 must be one of A or B . If all vertex angles of t:.ABC are acute, 
then we can drop a perpendicular from 0 to the interior of the opposite side . This 
means that angle C, the largest angle, must be either a right angle or obtuse. 
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Let m(L A) = x < y = m(L B)  with m(L C) � 90. Then any light ray leaving B at 

an angle (measured from BA) of (} = 90 - kx , with k a positive integer and 0 < (} < y ,  
will after k reflections hit either AB or A C  at 90°, and reflect back to B .  Such a light 
ray exists because x + y :::;; 90. Thus 0 = A. • 

Combining Theorems 2 and 4, we get a complete classification of the invisible 
points of a right triangle, namely as the acute vertices of size x ,  where x divides 90. 
Theorems 3 and 4 also classify the invisible points of an isosceles triangle . Whether a 
similar result holds for general triangles is an open question, and we make the 
following conjecture : 

CONJECTURE . A point 0 in a triangle is invisible if and only if it is a vertex of size x 
where x divides 90 and some other vertex has size px , with p a positive integer. 

Certainly if this condition holds , then the third vertex has size (2n - p - 1) x where 
180 = 2nx ,  and P is invisible by Theorem 1 .  Thus the conjecture reduces to showing 
that any invisible point (which must be a vertex by Theorem 4) satisfies the given 
condition. 
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1 .  Introduction 

B i j ecti ons  for the Sch roder N u m bers 
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The small Schroder numbers, 

( sn ) n � O  = ( 1 ,  1 ,  3 ,  1 1 ,  45 , 197 , . . .  ) , 

count many combinatorial configurations including the ways to place properly paren­
theses in a string of letters . The large Schroder numbers, 

( r 11 ) n � 0 = ( 1 , 2 ,  6 ,  22 , 90 , 394 , . . .  ) , 
also count many configurations , in particular, sets of upper diagonal lattice paths using 
the steps (1 ,  0), (1 ,  1), and (0, 1). Using "pictorial proofs," we will relate the se­
quences, (s ,, )n  � 0 and ( r11\ � 0 ,  by a sequence of bijections (one-to-one onto functions) 
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between various sets of configurations . Consequently, we will see why the terms of 
(r11 ) 11 <<1 are twice those of ( s11 ) 11 ; d . 

In his 1870 paper, "Vier Kombinatorische Probleme" [9] (see also [ 1 1]), Ernst 
Schroder considered counting the ways to place parentheses on a string of letters . We 
recursively define a bracketing on a string of letters so that each letter is itself a 
bracketing and so that any consecutive sequence of two or more bracketings becomes 
a bracketing when enclosed by a pair of parentheses . However, we omit the parenthe­
ses enclosing any single letter and the outer parentheses enclosing the bracketings 
covering all the letters of the string. For example, the strings a and ab have only a 
and ab as the respective bracketings, while the string abed has eleven bracketings : 

abcd , ( ab ) cd , ( abc ) d , a( bc ) d , a( bcd) , ab ( cd ) ,  
( ( ab ) c ) d , ( a( bc ) ) d , a( ( bc ) d) , a( b ( cd) ) , ( ab ) ( cd ) .  

We define the small Schroder numbers, (s .)" " 0 ,  so that S 11  is the number of 
bracketings for a string of n + I letters . Schroder's most concise formulation for these 
numbers was given by the generating function 

L s" x " = ( 1 + x - h - 6 x + x 2 )/4 x .  
n ;;;, O 

For perspective we note tl1at in 1838, Eugene Catalan (see [ 1 1 , p. 212]) considered 
counting the binary placement of parentheses on a string of letters . For example, the 
string abed has five binary bracketings, namely, ((ab)c)d, (a(bc))d, a((bc)d), 
a(b(cd)), and (ab )(cd). What we now call the Catalan numbers , namely 

( C n ) , ;;, o = ( n � l ( 2nn ) ) n ;;, 
0 

= ( 1 ,  1 ,  2 ,  5 ,  14 , 42 , . . .  ) , 

count the binary bracketings for each string of n + 1 letters . One can reduce any of 
tl1e sets of configurations we encounter to one enumerated by the Catalan numbers . 

From the bijections implicitly defined in FIGURE 1 ,  we see that bracketings are 
immediately related to two other configurations, namely (1) planted trees with internal 
nodes without degrees at least two; and (2) dissections of convex polygons . (A plane 
tree is a rooted unlabeled tree, where two trees are the same if one can be 
continuously transformed into the other in the plane while the non-root nodes remain 
above the root. A plane tree is called a planted tree if its root has degree one. Given a 
convex polygon with a designated base, a dissection of the polygon is a set of 
non-crossing line segments joining some of the non-adjacent vertices . )  In FIGURE 1 ,  
we see that for each dissection of  an ( n + 2)-gon there i s  a naturally determined 
planted tree with n + 1 leaves, which in turn determines a bracketing on n + 1 
letters . Since the existence of a bijection between two sets implies they have equal 
cardinality, we have the following. 

THEOREM 1. For n � 0, the number of bracketings on a string of n + 1 letters is 
equal to the number of dissections of a convex polygon with n + 2 sides, one of which 
is designated as the base . 

For n � 0, let R 11 denote the set of lattice paths in the xy-plane that run from (0, 0) 
to (n , n), that never pass below the line y = x, and that use horizontal steps, (1 ,  0), 
diagonal steps, (1 ,  1), and vertical steps, (0, 1). The bottom row of FIGURE 4 shows the 
six paths of R2 • We call the paths of R 11 ,  the Schroder paths of length n, and we 
define the large Schroder number, r n , to be the cardinality of R , . One of the concise 
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f 

c 

ROOT 

F I G U R E 1 

The dissected polygon and the planted tree corresponding to the bracketing 
a((((bc )d( ej)( gh))ij)k ). 

fonnulas for these numbers is in terms of the Catalan numbers (see [1 ]): 

Using generating function methods (as in [7]) one can find the generating function for 
( r) n « 0 and then show that r,. = 2 s n for n � 1 .  Here however, we will continue the 
pictorial bijective approach to explain this "doubling."  

THEOREM 2. For n � 1 ,  the number of Schroder paths of length n is twice the 
number of dissections of a convex polygon with n + 2 sides, one of which is designated 
as the base . 

2 .  Notes for the picture proof 

Our proof of Theorem 2 is indicated in FIGURES 2 and 3, and again in FIGURE 4. By 
previewing these figures one should find many of our words redundant. Using two 
colors , G and B , we double the set of all dissections of an (n + 2)-gon by coloring 
each base either G or B . We will prove Theorem 2 by establishing a bijection from 
the dissections with a bicolored base to the path set R n as a composition of five 
bijections. 

Bijection 1 (FIGURE 2): Here we consider planted full binary trees with bicolored 
right (non-leaf) branches, that is, planted trees having internal nodes with a left and a 
right out edge, such that each non-leaf-adjacent right out edge is colored by G or B . 
FIGURE 2 illustrates our algorithm for growing such a tree in a dissected polygon. Here 
the base and the root are colored G .  As we grow such a tree, we add the dashed 
diagonal segments so that they completely triangulate the polygon and are always 
crossed by the right branches of the tree . A right branch that crosses a dashed 
segment is drawn as a thick B edge, while a right branch crossing an existing interior 
segment is drawn as a thin G edge . Technically, our tree growing algorithm creates 
just two new edges at each of n steps; our FIGURE 2 has combined some steps . 
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G 

G 
F I G U R E 2 

G 

G 

Constructing the planted full binary tree with bicolored right (non-leaD branches that is 
associated with the dissected polygon of FIGURE la. 

Bijection 2 (FIGURE 3ab): FIGURE 3a shows the tree from FIGURE 2. In FIGURE 3b we 
consider planted trimmed binary trees with bicolored right branches, that is, a planted 
tree having internal nodes with either a left out edge, a right out edge, or both, where 
each right out edge is either G or B. Such a tree can be obtained from a full binary 
tree with bicolored right (non-leaO branches by removing the leaves and their 
adjacent edges .  This process yields a one-to-one correspondence since edges can be 
added to any trimmed binary tree to obtain a full binary tree in a unique well-defined 
manner. 

Bijection 3 (FIGURE 3bcd): In each such trimmed tree we will label the branches 
above each node as follows : If the node has only a left branch, place an N to the left 
of the branch. If the node has only a right branch, place an E to the left of branch. If 
the node has two branches ,  place an A to the left of the left branch and a T to the left 
of the right branch. We also place an A to the left and a T to the right of the root 
edge . From each trimmed tree we can obtain a word on the letters N, E, A, and T as 
follows : We traverse each tree in a depth-first search manner from the left as in 
FIGURE 3c. We record each label when the corresponding edge is first encountered. 
Tracing around the tree in FIGURE 3b yields the sequence AENAATEATTT. 

A parallelogram polyomino is an array of unit squares that is bounded by two 
lattice paths using the steps, (0, 1) and (1 ,  0), and intersecting only initially and finally. 
Two steps , one from each of the boundary paths, are called "diagonally opposing" if 
they have the same position in the consecutive ordering of the steps in their respective 
paths (i . e . ,  the end points of the two steps lie on the same line of slope - 1) .  

From each word on N,  E, A, and T, we then form two paths enclosing a 
parallelogram polyomino by consecutively mapping each letter to a pair of diagonally 
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Constructing the lattice path associated with the planted full binary tree with bicolored right 
(non-leaD branches of FIGURE 2. Thick edges have color B .  

opposing steps according to the scheme of Table 1 where each pair o f  arrows indicates 
a diagonal opposition of steps. This word AENAATEATTT determines the polyomino 
in FIGURE 3d. Moreover, as we traverse the tree of FIGURE 3b we record the color of 
each right edge traversed when each E or T is recorded, assigning this color to the 
corresponding horizontal step on the upper-left boundary of the polyomino . We assign 
the root color to the last horizontal step on the upper-left boundary. 
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TA B L E  1 

A ("apart" ) yields i E ("east" ) yields 

N ("nmth" ) yields i T ("together" ) yields 

i i 

Bijection 4 (FIGURE 3de0: We first define a Catalan path from (0, 0) to (n , n) as a 
lattice path that uses the steps (1 ,  0) and (0, 1), runs from origin to (n , n), and never 
passes below the line y = x .  

For FIGURE 3e, assign the indices 0 ,  1 ,  2, . . .  , n to the steps of  both boundary paths of 
the polyomino in FIGURE 3d. In the figure we have recorded only the indices for the 
horizontal steps. Assign the color of each top horizontal step to the column beneath. 
Then map each polyomino to a Catalan path so each peak (right-hand turn) of the 
path has coordinates ( x ,  y ), where x is the lower index and y is the upper index of a 
column of the polyomino. In FIGURE 3f, the coordinates of the peaks are (0, 1), (1 ,  5), 
(3, 6), (4, 8), (6, 9), and (7, 10). Color each peak the same as the corresponding 
column. 

One referee suggested an alternative description for Bijection 4 :  In FIGURE 3d cut 
the upper path at the right endpoints of its horizontal steps, and then straighten the 
resulting segments to get vertical segments of steps .  The top step of each segment is 
colored B or G. Also cut the lower path at the left endpoints of its horizontal steps, 
and then straighten the resulting segments to get horizontal segments of steps . 
Concatenate these segments by starting with the first vertical segment and alternately 
appending the segments of each type as originally ordered. The nonintersecting 
property implies that the sequence of vertical segments lengths strictly majorizes that 
for the horizontal ones and so the result is a Catalan path that only returns to the 
diagonal at its endpoint . Color the peaks according to the color of the topmost step of 
each vertical segment and delete the first and last steps to obtain a Catalan path as in 
FIGURE 3e . 

Bijection 5 (FIGURE 3fg): Finally, we obtain a Schroder path by converting the B 
peaks on the Catalan path to diagonal steps . 

3 .  Background remarks 

The Schroder numbers are ancient and arguably misnamed. A few years ago, as noted 
by Stanley [ 10] in his interesting survey of the Schroder numbers, David Hough 
discovered that the small Schroder numbers were apparently known to Hipparchus 
over 2100 years ago . Specifically, Plutarch (see [10]) records that Hipparchus knew 
the tenth number, s9 = 103049, in the context of counting certain logical propositional 
forms. See also [1 1, p. 213]. Problem 6.39 of Stanley's recent book [ 1 1] lists 19 
different configurations enumerated by the Schroder numbers and gives additional 
references for these numbers . 

Motivating this note was a preprint version of Problem 6 . 17c of [ 1 1], which asked 
for a bijective proof relating dissections to Schroder paths . Moser and Zayachkowski 
[5] studied such paths in 1961 .  We note that Rogers and Shapiro [8] and later Bonin, 
Shapiro, and Simion [1 ]  have also defined maps that bijectively relate bracketings to 
Schroder lattice paths . 
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Counting dissections o f  polygons dates from about 1758, when Euler and Segner 

considered the enumeration of complete dissections of a polygon, or triangulations, 
which resulted in the European introduction of the Catalan numbers . These numbers 
were known to the Mongolian mathematician, Ming An-tu, who obtained recurrences 
for them in the 1730's .  (See [ 11 ,  p .  212].) A bijection between the set of triangulations 
of a polygon and the set of planted binary trees was perhaps first given by Forder [4] .  
Restrictions of our Bijections 1 to 4 will map the two triangulations of an (n + 2)-gon 
to the set of Catalan paths running to (n , n). In FrcuRE 4, notice that the triangulations of 
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The sequence of bijections from the dissections of a square to the Schroder paths in R 2 .  
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the square with G base are mapped to Catalan paths. Our use of  trimmed binary trees 
with bicolored right branches agrees with the recent use by Foata and Zeilberger [3] 
in their bijective proof showing the small Schroder numbers to satisfy the recurrence 
( n + l)sn = 3(2 n - l)s11 _ 1  - ( n - 2)s11 _ 2 , for n ::2: 2. 

The four correspondences defined in Table 1 can be gleaned from Delest and 
Viennot [2] . Recently, Barcucci, Del Lungo, Fezzi, and Pinzani (see [7]) considered 
parallelogram polyominoes consisting of black and white columns and were the first to 
find that r11 counts all such polyominoes with semiperimeter n + l. In the mid 1950's, 
Narayana [6] gave a bijection between non-colored parallelogram polyominoes and 
Catalan paths which is equivalent to ours of FrcuRE 3ef. 
Acknowledgment. We appreciate the referees' suggestions for improving this note . 
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Span n i ng Trees : Let Me Cou nt the Ways 

D O U G L A S  R .  S H I E R  
C lemson U n i versity 

Clemson, SC 2 9 634-0975 

I.  Introduction An important pedagogical lesson is that there need not be a single, 
or even preferred, solution to a given problem. I learned this lesson well from 
students at the London School of Economics who were studying graph theory as part 
of their first year in a master's degree program in operations research. While I had in 
mind what was clearly the "ideal" way to solve a certain problem in applied graph 
theory, the variety of solutions they generated was both refreshing and inspiring. This 
article aims to present this seemingly innocent problem and several different solu­
tions .  More important than the specific answer are the various routes that lead to the 
final destination. As a by-product, we will be treated to a minitour of elementary 
combinatorial mathematics-with excursions into matrices, generating functions, in­
clusion-exclusion, and recursion . 
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2.  The problem A telecommunications company has n ground stations, to be 
linked with its two orbiting satellites .  In how many ways can we link the ground 
stations to the satellites so that all parts of the resulting system can communicate with 
one another efficiently? (FIGURE 1 shows one possibility.) Every pair of ground stations 
can communicate (via either one or two intermediate satellite connections); the two 
satellites A and B can also communicate with each other via a ground station. This is 
to be achieved, moreover, using the smallest possible number of links . 

A B 

-<?- -<?-
, ' I I \ , I I \ ' 

\ I \ ' 
\ 

I 
I ' 

I ' 
' I ' 

I ' 
I \ , ' 

• • • • • • • 
1 2 3 n - 1  n 

F I G U R E 1 

A possible configuration of two satellites and n ground stations . 

To abstract this problem, we see that a candidate solution is an undirected graph [4] 
on n + 2 vertices, with the property that all vertices are accessible (either directly or 
indirectly) from one another using edges (proposed communication links). This is 
simply the requirement that the candidate graph G be connected: every pair of 
distinct vertices of G is joined by some path. For the sake of efficiency, no 
unnecessary edges should be present: that is, G should be without cycles . A con­
nected graph without cycles is called a tree, and our problem requires a tree that 
includes all vertices :  a spanning tree . 

We denote by Kn, , n 2 the complete bipartite graph on n1 and n2 vertices . This 
graph consists of a set 51 with n1 vertices and a disjoint set 52 with n2 vertices; the 
edges of Kn, , n 2 are those joining every vertex of 51 to every vertex of 52 . The original 
problem can now be restated: 
Problem: Find the number t n of spanning trees in K2, " . 

Notice that K2, n has n + 2 vertices and 2n  edges .  It is straightforward to verifY 
that any (spanning) tree has one fewer edge than the number of vertices. Thus a 
spanning tree T for our problem will have n + 2 vertices and n + 1 edges .  

We look first at the simplest possible cases (see FIGURE 2): 

(a) (b) 
F I G U R E 2 

The cases n = 1, 2, 3 .  

(c) 
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Case 1 (n  = 1): Since K2,1 i s  itself a tree, it contains precisely one spanning tree,  so 
tl = 1 .  

Case 2 (n  = 2): Removing any one of  the four edges o f  K2, 2 leaves a spanning 
tree, giving t2 = 4.  

Case 3 (n  = 3) :  Here T must have n +  1 = 4 edges selected from the 2n  = 6 edges 
of K2, 3 • There are ( � ) = 15 ways of selecting the two edges to rerrwve from K2, 3 • So 
long as both such edges are not incident with the same ground station i, we obtain a 
spanning tree,  giving t3 = 15 - 3 = 12. 

Further experimentation with small examples becomes increasingly complicated, so 
the following sections present seven different ways to solve this problem for arbitrary 
n. (Readers may wish first to guess the general solution.) 

3.1  Direct counting Since K2, "  has n + 2 vertices and 2n  edges, any spanning 
tree T will end up selecting n + 1 out of these 2n  edges .  To aid in counting such 
trees, we note that the satellites A and B must be connected by a unique path in T,  
via some vertex i E { 1 ,  2, . . .  , n} .  This leaves n + 1 - 2 = n - 1 edges of T to be used 
to join up the remaining n - 1 ground stations other than i. Consequently, each j -=/= i 
must be directly connected to precisely one of A or B ,  as shown in FIGURE 3. 

F I G U R E  3 

A unique ve1tex i is joined to both A and B in T.  

We can now count the number of spanning trees directly. Exactly one of the n 
ground stations is selected as the common neighbor i of both A and B ;  there are thus 
n choices for i .  Each j -=/=  i can be chosen independently to connect to either A or B ,  
giving two choices for each o f  these n - 1 stations .  Thus t 11  = n X 2 X 2 X · · ·  X 2 = 
n 2 " - 1 . In particular, t1 = 1(2° )  = 1, t2 = 2(2 1 ) = 4, and t3 = 3(2 2 ) = 12, as previously 
found. 

3.2 Conditioning Here we condition on the number k of edges in T tl1at emanate 
from A. Note that n + 1 - k edges then emanate from B ;  see FIGURE 4. As observed 
earlier, precisely one vertex i is joined directly to both A and B .  

1 
\._ 

n 

\r � 
k n - k  

F I G U R E 4 
Conditioning on the k edges from A. 
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There are ( � ) ways of selecting the k vertices that are joined to A. Since for each 

such selection there are k choices for the special vertex i ,  there are then k ( � ) ways 
of constructing a spanning tree with k tree edges emanating from A. Since the 
situations for different k are mutually exclusive, we obtain 

t, = t k ( � ) = t k ( � ) · ( l) 
k = l k = O  

The reader is invited to show that the sum (1) does in fact equal n2 " - 1 . [ Hint : Start 
by differentiating the identity (l + x ) " = Lk = o (  � )x k with respect to x . ] 

3.3 Deletion Instead of considering different ways to select the n + l tree edges 
out of the 2n edges of K2, " ' we can focus on the 2n - (n + l) = n - l edges to be 
deleted. The important criterion is that no two deleted edges can be incident with the 
same ground station. The first deleted edge, say incident with ground station i 1 , can 
be any of the 2n edges of K2, , ; the second edge, incident with ground station i 2 , can 
be any of 2n - 2 edges, as it must avoid isolating vertex i 1 . Continuing, the third 
deleted edge can be chosen from any of 2 n - 4 edges, as it must avoid isolating either 
vertex i 1 or i 2 . In general, the (j + l)st deleted edge can be chosen from any of 
2n - 2j edges. Multiplying these possibilities gives Oj',:-g (2n - 2j). However, we 
have seriously overcounted, since selecting in order edges e1 , e2 , . . . , e, _ 1 gives the 
same end result as selecting these edges in a different order. Indeed, every permuta­
tion of e1 , e2 , . . .  , e, _ 1 gives the same result, so that this product needs to be divided 
by (n - 1) ! .  SimplifYing the result (thanks, reader!) again yields t" = n2 " - 1 . 

3.4 Inclusion-exclusion The inclusion-exclusion principle [2] lets us count items 
by developing successive overestimates and underestimates .  Here we are interested in 
selecting n + l edges to form a spanning tree. There are N = ( n 2: 1 ) selections in all, 
but many of them isolate a ground station. Define E; to be the set of selections of 
n + l edges in which ground station i is isolated, i = l, 2, . . .  , n. Notice that in any 
selection of n + l edges, vertices A and B cannot be isolated. 

We are interested in IE1 n E2 n o o •  n E" l , the number of selections that do not 
isolate any ground station. This quantity can be found by invoking the inclusion-ex­
clusion principle, which can be stated as follows : 

I Er n .E2 n 0 0 .  n .E,, 
= N - I: I E; I + I: I E; n E1 I - · 0 0  + ( - 1) " I  E1 n E2 n 0 0  • n E,,l . 

i i <j  

Here I E; I = ( 2n"; 12 ) for each i since none of the n + l selected edges can be incident 

with i. Similarly I E1 n E2 n o o •  n Ek l = ( 2 :: � � k ) , and the above expansion becomes 

l "; l j 
t, = 

L ( - l) k ( n ) ( 2n - 2k ) . (2) 
k = O  k n + l 

Since the left-hand side of (2) must equal n2"- 1 , we have established a combinato­
rial identity, one that is not immediately obvious . The reader is invited to verify this 
identity directly for small values of n . (Reference [3] is an excellent source of 
combinatorial identities. In the present case, (2) was established by counting a set in 
two different ways , and then equating the results .) 
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3.5 Matrix algebra The matrix-tree theorem [1 ]  counts the number of spanning 
trees of any undirected graph G on r vertices, by evaluating a certain determinant . 
This theorem states that the number of spanning trees of G is given by any cofactor of 
the matrix M(G) = Deg(G) - Adj(G), where the r X r diagonal matrix Deg(G) has 
the degrees of the vertices (number of incident edges) along the diagonal and the 
r X r adjacency matrix Adj(G) has a 1 as its ( i , j) entry if vertices i and j are adjacent 
Qoined by an edge) and a 0 otherwise. 

Here G = K2. " ' and if we order the vertices as A, B, 1, 2, . . .  , n then 

A B 1 2 n 
A n 0 - 1  - 1  - 1  
B 0 n - 1  - 1  - 1  

M ( K2 , n ) = 1 - 1  - 1  2 0 0 
2 - 1  - 1  0 2 0 

n - 1  - 1  0 0 2 

It is left to the (overworked) reader to delete the first row and column of M(K2 " ) 
and then evaluate the resulting determinant, say by expanding along the new first r�w. 
With a little determination, one obtains the familiar final answer n2 " - 1 • 

3.6 Cryptomorphic approach We can sometimes solve a problem by recognizing 
it as a disguised ("cryptomorphic" ) version of a more familiar (or seemingly more 
tractable) problem. In the present case, we will set up a 1-1  correspondence between 
the spanning trees T of K2, n and the edges of the hypercube Hn . The hypercube is 
an n-dimensional generalization of the square (n = 2) and the cube (n = 3); Hn has 
2 " vertices, each of degree n .  

To  provide this 1-1  correspondence, consider a spanning tree T of  K2. n · We 
construct an n-vector x= ( x l , X2 , 0 0 0 , xn ) from T in the following way. For each 
ground station i ,  we assign x i = 0 if i is joined only to A, X ; =  1 if i is joined only to 
B ,  and x i = * if i is joined to both. Since there is a unique ground station joined to 
both A and B ,  x contains exactly one * . FrcuRE 5 illustrates this construction for a 
particular spanning tree T of K2, 5 , giving x = (0, 1 ,  * , 0, 1) . Now we observe that x 
corresponds to a unique edge of H5 : namely, the edge connecting (0, 1, 0, 0, 1) and 
(0, 1 ,  1 ,  0, 1) . In general, the constructed vectors x, and thus the spanning trees of 
K2. , , uniquely correspond to the edges of H" . Our equivalent problem, now that the 
disguise has been revealed, is to count the edges in H n . Since each of tl1e 2 " vertices 
of Hn has degree n, the total number of edges is kn2 " = n2 " - 1 [Why?]. 

3. 7 Recursion Many counting problems can be reduced to similar problems of 
smaller size. This leads to a recurrence relation that can be solved to produce the 
general answer. 

Specifically, a spanning tree involving stations 2, . . .  , n can be extended to include 
station 1 in two ways. First, we can add a single edge from 1 to either A or B ;  so the 
tn - l spanning trees for 2, . . .  , n  give rise to 2 t11 _ 1 spanning trees for 1 , 2, . . .  , n . 
Alternatively, there are 2 " - 1 spanning trees in which station 1 is joined to both A and 
B .  The following recurrence relation, with initial condition t0 = 0, results : 

(3) 
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1 5 (0, 1, * ,  0, 1) 

F I G U R E 5 

A spanning tree T and its corresponding vector x. 

One way to solve the recurrence (3) is with generating/unctions (see, e.g. , [2]). [ Hint : 
Define T( x )  = E� = 0 t n x n and exploit the recurrence relation to obtain the closed 
form T( x ) = x(l - 2 x )- 2 • Using binomial coefficients , expand this expression in 
terms of powers of x to obtain T( x ) = E'k=0 ( k + 1)2 k x k + l  and thus tn = n2 n - l . ] Yet 
again we obtain the familiar answer, but by a much more circuitous route . 

Acknowledgment. We thank the referees for helpful suggestions that greatly improved the exposition. 
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I l l ega l A l iens  and Wa it i ng  T i mes 

E U G E N E  F .  K R A U S E  
U n iversity of M ich igan 

Ann Arbor, M l  481 09-1 1 09 

Introduction In this paper we apply elementary probability to a problem suggested 
by the current political debate over a vexing social issue. An interesting dividend is the 
unexpected appearance of Euler's number e . 

The population of the United States consists of about 280 million legal residents 
and about 5 million illegal aliens . A two-part get-tough policy has been proposed: (1) 
legal residents would be issued non-counterfeitable identification cards; (2) police 
would be allowed to stop people at random to check for identification. Legal residents 
would, of course, be let go; illegal aliens would be deported. Opponents of the 
proposed policy describe it as unacceptably intrusive. Proponents counter that it 
would be only a minor nuisance. Leaving aside all political questions, can we use 
mathematics to quantify just how inconvenient such a policy would be? Specifically, 
can we answer the following questions? 
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QUESTION 1 .  How many times should a legal resident expect to be stopped for 
identification if the policy remains in effect until every illegal is deported? Until half of 
the illegals are deported? 

QUESTION 2. If each legal resident is willing to be stopped just once (on average), 
what fraction of the population of illegals will escape deportation? (We shall see that 
the answer to this question is lje . ) 
A mathematical model We make three broad assumptions to keep our model 
simple . (l) No legal residents are added to or subtracted from the population while 
the program is in progress. (2) No illegal aliens are added to the population while the 
program is in progress, and none are subtracted except those deported. (3) The police 
check for identification in a truly random fashion. 

One can object that these assumptions are unrealistic, and thus any mathematical 
conclusions derived from them will not fit the real-world situation. That is, of course, 
the fundamental difficulty of "applied mathematics . "  One way to mitigate the 
difficulty is to make more realistic assumptions-and pay for the added realism with 
more complicated mathematics . Another way out, and the one we will take, is to agree 
to interpret the predictions of the (simple) mathematical model as only rough 
approximations to what might happen in the real world. 

On the basis of our assumptions we now view the United States as a large urn 
containing 280 million black balls (legal residents) and 5 million red balls (illegals). 
Balls are drawn from this urn, at random, one at a time. When a black ball is drawn, it 
is returned to the urn before the next draw. When a red ball is drawn, it is 
permanently removed. Thus our questions take the following forms . 

QUESTION 1 .  On average, how many times is each black ball drawn before all of the 
red balls are removed? Before half of the red balls are removed? 

QUESTION 2. What fraction of the original number of red balls can be expected to 
remain in the urn after each black ball has been drawn once (on average)? 
Posing and solving the mathematical problems Ultimately we are interested in 
questions concerning the drawing of balls from an urn with partial replacement: blacks 
go back, reds do not. To answer those questions , though, it turns out (as one might 
expect) that we need to answer analogous but simpler questions about two "pure" 
situations : drawing in which both blacks and reds are replaced, and drawing in which 
neither blacks nor reds are replaced. 

To distinguish among the various modes of drawing, a rather elaborate notation 
seems to be necessary. Since our questions have to do with "waiting times" (the 
number of draws one should expect to make to achieve some end), our notation is 
built around the letter W. An unadorned W denotes drawing with replacement. W 
denotes drawing without replacement, and W denotes drawing with black balls 
replaced and red balls not replaced. Subscripts indicate the numbers of red (left 
subscript) and black (right subscript) balls originally in the urn; superscripts (left for 
red, right for black) indicate the number of balls we are waiting for. Here are the 
formal definitions . 

DEFINITIONS . An urn contains r red and b black balls . Balls are drawn randomly 
one at a time .  
(l) �Wb = waiting time for the k th drawing of a red ball, where drawing i s  done with 

replacement. 
(l ' ) rwbk = waiting time for the k th drawing of a black ball, where drawing is done 

with replacement. 
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(2) ;wh = waiting time for the k 1h drawing of a red ball, where drawing is done 

without replacement. 
(2 ' )  r wbk = waiting time for the k th drawing of a black ball, where drawing is done 

without replacement. 
(3) ;wh = waiting time for the k 1h drawing of a red ball, where blacks are replaced 

but reds are not. 
( 4) r wbk = waiting time for the k th drawing of a black ball, where blacks are replaced 

but reds are not. 

For example, �W9 denotes the waiting time for the drawing of the third red ball 
from an urn containing 5 red and 9 black balls , where black balls are replaced but reds " k k k - - k k A A k are not. Notice that X wy = y wx and X wy = y wx ' but X wy =F y wx . Thus we seek four 
formulas . They are the substance of Theorems l -4 which follow. 

THEOREM l . 

(5) 

Proof It is well known that for Bernoulli trials, which is the situation when drawing 
is done with replacement, the waiting time for an event E is the reciprocal of its 
probability. Thus 

1 l r +  b rwb = rj( r + b ) = -r- = l + bjr ,  

and obviously ;wh = k - ;wh .  
By the symmetry that we observed following our six definitions ,  

r Wl = k ( l + E) • 

THEOREM 2 . 

• 

(5 ' ) 

(6) 

Proof This result seems to be less well known than (5), although it apparently has a 
kind of obscure folklore status. An intuitive plausibility argument goes something like 
this . Imagine a record of draws of all of the red (R) and black (B) balls. Say it looks 
like this : 

R BBB R B R R BBBB R · · · 

Then the r reds partition the b blacks into r + l strings of repeating blacks . In the 
example above those strings have lengths 0, 3, l ,  0, 4, . . . . The average length of each 
string of repeating blacks is thus b /( r + 1). Hence the waiting time for the k th red is 

k ( r ! l ) + k = k ( l +  r ! l ) . 
A careful proof of (6) can be made by treating r as an arbitrary natural number, 
inducting on k ,  and, within that induction, inducting on b . • 

Again, by symmetry, 

rwl = k ( l + b : l ) . ( 6 ' ) 
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THEOREM 3. 

( 7) 

Proof Theorem 3 follows easily from Theorem l .  Until the first red ball is drawn, 
we are drawing with replacement. Thus, by Theorem 1 ,  

1 A 1 b 
Wb = Wb = 1 + -r r r 

After the first red ball has been drawn, we again draw with replacement until the 
second red ball is drawn. Thus 

The extension of this argument to yield Theorem 3 is obvious . • 

Computationally, Theorem 3 leaves much to be desired. In our motivating problem 
r = 5 million and b = 280 million. To use Theorem 3 to find the waiting time until the 
last red ball has been chosen, we would have to sum the first 5 million terms of the 
harmonic series . Fortunately, Euler was good enough to leave us an approximation 
formula (see, for example, [ 1 ,  p. 538]) for such partial sums, 

r 1 1 I: -:- z ln r + -2 + 0 .57721 
t � l 

z r (8) 

(where 0.57721 is an approximation to Euler's constant, y ), which yields a computa­
tional friendly approximation to the formula in (7). 

COROLLARY l .  
k A [ r k ] 
r 
wb "" k + b ln r - k - 2r ( r - k )  if k < r ;  (9) 

k A [ 1 ] 
r 
wb "" r + b ln r + 2 r + 0 .57721 if k = r . ( 10) 

Proof The case k = r in (10) is an immediate consequence of (8) and the 
observation that 

The case k < r in (9) follows from the observation that 

and two substitutions from (8). • 

COROLLARY 2. Drawing is done with black balls replaced and red balls not . F is a 
rational number of the form mjr with m = 0, 1 ,  2, . . .  , r . To reduce the population of 
red balls from r to Fr ("reduce it by a factor of F"), each black ball should expect to 
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be drawn approximately 
1 - F - ln F - 2rF times if F =fo 0 ; 

ln r + 2
1
r + 0 .57721 times if F = 0 . 

3 85 

( l l) 

( 12) 

Proof If the population of reds is to drop from r to Fr, then (1 - F)r reds must 
be drawn. The number of times, on average, that each black ball must be drawn 
then is 

( 13) 

If F =fo 0, then (1 - F)r < r and substituting from (9) into (13) yields (l l). If F = 0, 
then substituting from (10) into (13) yields (12). • 

THEOREM 4. 

r Wl = k + r ( 1 - [ b / ( b + 1) ] k ) ( 14) 

Proof As Theorem 3 followed from Theorem 1 , so Theorem 4 follows from 
Theorem 2. But this time the argument is a bit more difficult. We prove (14) by 
induction on k . For the case k = 1 we note that until the first black ball is drawn we 
are drawing without replacement. Thus, by (6') , 

Now we assume ( 14) for k and consider the case k + l .  After the k th black has been 
drawn, the number of reds that have been drawn is rwbk - k which, by the inductive 
hypothesis, is 

Thus the number of reds remaining in the urn is 

rl = r ( b ! 1 f 
and, of course, the number of blacks in the urn is still b . Now drawing resumes, 
without replacement, until the next black is drawn. Hence 

wk+ l = wk + w l 
r b r b r1 b 

= k + r ( 1 - [ b ! 1 r ) + ( 1 + rl [ 1 - b ! 1 ] )  
= ( k + 1) + r ( 1 - [ b ! 1 ] k + l ) . • 

COROLLARY 3. For large b ,  the number of red balls remaining in the urn after black 
balls have been drawn k times is approximately re -k I b . That is , the red population has 
been shrunk by a factor of e-k f h . 
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Proof By Theorem 4, 

Thus, for large b ,  

rwl <::> k + r( 1 - e - k ! h ) .  

The k in this sum represents the k draws of black balls . Thus r(1 - e - k ! h ) red balls 
have been drawn, and thus re-k / h  remain in the urn. • 

Note. To see that Corollaries 2 and 3 are consistent with each other, for large r and 
b and F not too near 0, let x be the number of draws per black ball to reduce the red 
population from r to Fr. By Corollary 2, x <::> - ln F. By Corollary 3, F <::> e -x h / h . 
Obviously the equations corresponding to these estimates are equivalent. 

Answering the original questions Recall Question 1: On average, how many times 
is each black ball (legal resident) drawn (stopped for identification) before 100% of 
the red balls (illegal aliens) are removed (deported)? Ibid 50% removed (deported)? 
The answer to the 100% part of Question 1 is found by setting r = 5,000,000 in (12): 
each black ball (legal) should expect to be drawn (stopped) approximately 16.00216 
times. The answer to the 50% part of Question 1 is found by setting r = 5,000,000 
and F = i in (1 1): each black ball (legal) should expect to be drawn (stopped) 
approximately 0 .69315 times .  

Question 2 asked: What fraction of the red balls (illegals) would remain in the urn 
(escape deportation) if, on average, each black ball were drawn once? One way to 
answer this question is to set ( 1 1) equal to 1 and solve for F :  

( 1 - F ) 1 1 = - ln F - 10 ,000 ,000 F <::> - ln F = <::> e 

A more direct way is to set k = b in Corollary 3. 

Three concluding remarks 1 .  The 100% and 50% values in Question 1 were 
chosen arbitrarily. To shed more light on that question we have produced a table 
(Table 1) showing a range of values for the fraction of illegal aliens to be deported-the 
quantity (1 - F)-and the corresponding approximate values of the number of times 
each legal resident should expect to be stopped-the quantities in (11)  and (12.). The 
values in this table are for the case of r = 5 million. Notice, however, that the 
expressions in (11)  and (12), and hence the values in Table 1, do not depend on b ,  
the number of  legal residents . I t  does not matter i f  there are 280 million legal 
residents, or 1 billion, or 1000. In order to catch (say) 90% of the 5 million illegals , 
each legal should expect to be stopped about 2.3 times. 

TA B L E  1 

Percent of 
illegals to 
deport 

Number of 

10 30 50 70 90 99.9 99.999 99.99998 

stops per legal 0 . 1 1  0.36 0.69 1 .20 2.30 6.91 1 1 .51  14.92 
resident 
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2. Theorem 4 was not needed to answer Questions 1 and 2. Its inclusion in this paper 
was an esthetic decision. We needed it to tie down a mathematical loose end and 
complete the theoretical picture. 

3 .  One reason for moving from the task of answering a specific real-world question to 
the task of building a general theoretical model is that the theoretical model can be 
used to answer other specific questions in other contexts. 

EXAMPLE 1. In some supermarkets strawberries are put out on a table and cus­
tomers are allowed to choose their own berries one by one . Typically the customer 
will pick up a berry and look it over. If it is good, he will keep it. If it is rotten, he will 
put it back on the table. Suppose there are 200 good berries and 100 rotten ones on 
the table, and a customer arrives who is determined to get 60 good berries .  How many 
berries should that customer expect to handle? 

Solution . Think of the table as an urn. The rotten berries are the black balls (the ones 
that are replaced), so b = 100. The good berries are the red balls (the ones that are 
not replaced), so r = 200. The number of berries that the customer should expect to 
handle until he has 60 good ones is 2�W100 which, by (9), is approximately 95 .56. 

EXAMPLE 2. Same context, but now the produce manager has supplied a garbage 
can next to the strawberry table into which customers throw their rotten berries . How 
many berries should the customer expect to handle to get 60 good ones? 

Solution . The expected number to handle is 2��W100 which, by (6), is approximately 
89.85. 

EXAMPLE 3. Original context (no garbage can), but now the customer will get 
disgusted and quit after he has handled his tenth rotten berry. How many good ones 
will he have? 

Solution . He will have 200 W1� - 10 good berries which, by (14), is approximately 
18 .94 .  

R E F E REN C E  
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I n d i a  

Introduction Heron lived in Alexandria in the first century AD. He gave the 
triangle area formula b. = ../ s ( s - a) ( s - b ) ( s - c)  . The triple (a ,  b ,  c) describes 
the sides of triangle ABC and s = -!<a + b + c). We use the word "side" also to mean 
the length of a side of the triangle. Furthermore, the discovery of the (13, 14, 15) 
triangle with area 84 is attributed to Heron. To honor Heron, a triangle with rational 
sides and area is called a Hemn triangle . These rationals can always be made integers . 
Hence our discussion considers Heron triangles for which the sides and the area are 
integers . In [5] Dickson mentions that Hoppe studied a special class of Heron 
triangles in which the sides are in arithmetic progression. Hoppe describes such 
triangles as triples of the form 

Notice that c + a =  2b  holds . Let's rewrite the preceding equation as 

c + a 2 
-b- I · ( 1 ) 

Let us leave Hoppe for a while and visit Euclid. The well-known angle bisector 
theorem says : The bisector of an angle of a triangle sections the opposite side into 
segments that are in the ratio of the other sides . Another well-known theorem asserts : 
The incenter of a triangle is the concurrence point of its angle bisectors. These 
theorems can be found in [ 4]. 

Consider triangle ABC together with the incenter I. Extend BI to meet AC at E 
as shown in FIGURE 1 :  

A 

B 
F I G U R E 1 

Viewing Hoppe geometrically. 
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Applying the angle bisector theorem to both triangles ABE and BCE gives 

BI AB BC AB + BC c + a 
IE = AE = CE = AC = -b - . 

389  

Compare the preceding equation to  (1) . Are you surprised? To put i t  another way, 
Hoppe described Heron triangles in which the incenter sections some angle bisector 
in the ratio 2 :  1. This geometric interpretation of Hoppe's work motivates the 
following problem: 

Describe Heron triangles ABC in which the incenter I 
sections the angle bisector BE in the ratio (c + a) : b = u :  v, (2) 
u > v  and gcd(u , v) = 1 .  

In this note we provide this description. 

Background material An angle a is called a Heron angle if sin a and cos a are 
rational. This is equivalent to tan( i- )  being rational. The equivalence holds because if 
tan( a/2) = q/p , a rational number with p > q and gcd( p , q )  = 1, then 

2 2 
and cos a = p - q . 

p 2 + q 2 (3) 

Consider a triangle ABC ;  let A, B ,  C denote the measures of the angles and a, b ,  c 
the measures of the sides opposite these angles .  Expanding the equation ? + % = 

i - { by the tangents (or the cotangents) one finds : 

cot { � ) + cot { � ) + cot { ; ) = cot { � ) cot { �  ) cot { ; ) . ( 4) 

The law of sines is 

From the equation cot( { )  = 

a b c 
sin A sin E sin G ' 

l + cos A . .  t d d  th 1 A It IS easy o e uce at - cos 

(5) 

( 6) 

The main result For convenience let us write the rational number ujv as A. From 
(2) we then have c + a =  Ab,  with A >  1. Therefore s = t <A  + 1)b and s - b = 
t <A - 1)b. Then (6) tells us that cot(% )cot( { )  = � � � .  We put this value into (4) 

and write the resulting equation as a quadratic in cot( { ): 
( A - 1) cot2 { � ) - 2cot { � ) cot { � ) + ( A +  1 ) = 0 .  

The quadratic formula now yields 
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We need not consider the negative root: it simply interchanges the expressions for the 
sides a and c (we do not regard triangles different if the sides appear in a different 
order). Here cot( { ) , cot( ? ) , and cot( � )  are rational numbers . Therefore the 
expression under the radical sign must be y 2 , a rational square . Let us put cot( ? ) = x .  
Then x 2 - ( A2 - 1) = y 2 , or 

!..2..Y_ = A +  1 = m gcd( m ,  n) = 1 .  A - 1  x - y n '  
Here mjn represents this common rational number. When solved for x and y , 

( A - 1) m2 + ( A +  1) n2 
x = 

-'-------'-----::2:-m_n_,_ _ __,__ ' 

( A - 1 )m2 - ( A +  1) n2 y =  2mn 
From A > 1 we have x > 0. Also x + !f.2...Q. Here y represents the positive square 
root for the pair (m, n), where m > -/ � � � n , and y represents the negative square 

root for the pair (m, n) if 0 < m < -/ � � � n . Either pair (m, n) may be used to 
generate the same Heron triangle. (We show this in the example to come later.) The 
values x and y then determine 

( A ) _ m ( B ) _ ( A - 1)m2 + ( A +  1) n2 ( C ) _ ( A +  1) n ( 7) cot 2 - n ' cot 2 - 2mn ' cot 2 - ( A - 1) m · 

From (7) we first determine tan( A/2), tan( B/2), and tan(C/2). Next we use these 
values into (3) to determine the values of sin A,  sin B, and sin C .  Then we use the 
sine rule (5) and replace A by u jv. A routine derivation leads to the side length 
expressions for the Heron triangle, namely 

( a , b , c ) = ( ( u - v) 2m2 + ( u + v) 2 n2 , 

2 v [ ( u - v) m 2 + ( u + v) n 2 ] ,  ( u 2 - v2 ) ( m 2 + n 2 ) ) . ( 8) 

We dropped the constant of proportionality in (8) because we keep gcd(a,  b , c) = 1 . 
The above triangle has the area /:::,. = 2mnv(u2 - v2 )[(u - v)m2 + (u + v)n2 ]. More­
over, it is easy to check that (c + a) : b = u :  v. Thus the triples (8) generate Heron 
triangles as (2) indicates .  Observe that setting u = 2 and v = 1 in (8) gives Hoppe's 
result. But we have more to say: 

Let us fix u and v and vary the parameters m and n over 1\1 .  
The resulting triples in (8) describe a subset o f  Heron 
triangles .  Each member triangle of this subset exhibits the 
property in (2). 

( * )  

The assertion ( * ) holds because the ratio (c + a) : b = u :  v is independent of m and 
n . But the story doesn't end there : 

Suppose now we vary u , v :  u > v over 1\1 .  Apply ( * ) succes-
sively for each such pair (u, v). The triples in (8) describe the ( * * )  
complete set of Heron triangles .  

An interesting consequence of ( * * ) is  this: The same Heron triangle may be obtained 
from (8) more than once . This is because the incenter of a given triangle sections at 
least two angle bisectors in distinct ratios u1 : v1 and u2 : v2 . These ratios define 
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distinct infinite subsets of Heron triangles .  But each o f  these subsets contains the 
given triangle . Notice that an equilateral triangle is not a Heron triangle (why?) and 
does not have this property. Following is a numerical illustration to describe the 
situation more clearly. 

A numerical example Consider the Heron triangle ABC : (a ,  b, c) = (25, 36, 29); 
one can check that the area is an integer. The incenter of this triangle sections the 
bisector of L ABC in the ratio u1 : v1 = (c + a) :  b = 3 : 2 . These values for u and v in 
(8) give a subset of Heron triangles :  

sl = { ( m2 + 25n2 ) , 4( m2 + 5n2 ) , 5( m2 + n2 ) } .  

Here A =  3/2. The pair (m, n) = (5, 2) is such that m > 15 n . So S1 determines the 
Heron triangle (a ,  b ,  c) = (25, 36, 29) via the positive square root y (we should 
remember to make gcd(a,  b, c) = 1). However, the pair (m, n) = (2, 1) is such that 
0 < m < 15 n . In this case S1 determines the same triangle ABC : (a ,  b, c) = 
(29, 36, 25) via the negative square root y .  Notice the interchange of values for a and 
c as we mentioned earlier. 

Next, the incenter of the starting triangle ABC sections the bisector of L BCA in 
the ratio u2 : v2 = (a + b) :  c = 13 : 5 . With these values (8) generates an infinite subset 
of Heron triangles :  

s2 = { ( 16m2 + 8ln2 ) , 5(4m2 + 9n2 ) , 36( m2 + n2 ) } . 
The values m = 9, n = 8 in S2 gives us the Heron triangle (a ,  b ,  c) = (36, 25, 29). Of 
course we should remember to reduce gcd(a ,  b, c) to 1. Can you explain why the sides 
appeared in a different order? In general, from the triples (8) it is possible to recover 
a triangle six times. We leave this determination to the reader. 

Conclusion The determination of Heron triangles continues to be of interest. Many 
popular problems involve Heron triangles (see e .g . ,  [ 1 ,  2, 5, 6, 7, 8, 9]) . But the beauty 
of the subject is that you can find new ways to detennine them. The present 
discussion suggests another direction: Consider the excenter I B opposite the vertex B 
of triangle ABC. Find the ratio in which 18 sections the bisector of angle ABC .  Use 
this ratio to describe Heron triangles . 

A referee points out that, when c or a is the hypotenuse, the calculation (c + a) :  b 
= u :  v produces the parameters u ,  v for a Pythagorean triangle (a Pythagorean 
triangle is a right triangle with integer sides, so it is a Heron triangle; see [3]. This fact 
is available from our discussion too : Set m = n. From (7) we have cot( 4- )  = � = 1 so 
L BAG = i' · Then (8) yields the Pythagorean triples (a, b, c) = (u2 + v2 , 2uv, u2 - v2 ). 

We recently became aware of the preprint [2], in which the authors extend their 
work in [1] .  However, that extension is limited to the special case u = 2 a, v = 1 ,  
(where a i s  a positive integer) of  the present discussion. 

Acknowledgment. The author thanks the referees for their suggestions, which improved the readability of 
this note. 
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Proof Without Words: The S i ne of a Sum 

The area of  the white parallelogram on  the left i s  sin( a + {3 ) .  

i 

r 
sin /3 

l 
+--- cos a ---t 

sin( a +  {3 ) = sin a · cos {3 + cos a · sin {3 .  

-VoLKER PRIEBE AND EDGAR A. RAMOS 
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66123 SAARBR1:JCKEN, GERMANY 
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Sq uare Waves from a B l ac k  Box 
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Tech n i kon Pretor ia  

and 
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H attiesbu rg, MS 3 9406-5045 

S T E P H A N  V .  J O U B E R T 
Tech n i kon Pretor ia  

Pretor ia  000 1 
S outh Afr ica 

When we teach ordinary differential equations, or indeed any other course that uses 
software to facilitate instruction, we tell the students that we have one axiom: 

The computer is not to be used as a black box ! 

We are sure many other instructors share our axiom. We recently ran across what we 
think is a fme example to make the point. 

Spring models are useful examples in beginning DE courses, and we like to use the 
nonlinear hard/soft spring model 

i + ax + bx 3 = 0 ,  
where a > 0 .  Here the mass o n  tl1e spring has been normalized to 1 and the restoring 
force is taken to be the odd function - ax - bx 3. If b > 0, then the spring is called 
hard and all solutions are oscillatory and periodic; if b < 0, then the spring is called 
soft and for sufficiently small initial values, the solutions are oscillatory and periodic, 
but for other initial values the solutions grow without bound. For more details on this 
example and similar ones see [1 ]  and [2]. 

Consider the soft spring equation 

with initial values x(O) = 0 and i(O) = 1/ 12 .  Using Mathematica's ODE numerical 
routine NDSolve, our students produced solutions and phase plane trajectories much 
like those shown in FIGURE l. 

X 
1 n 

0.5 

- 0.5 
- 1  

20 

u 

n n 

40 60 

u u 

n 

80 

n 

10 t 0 

F I G U R E 1 

2 
1 .5 

1 

1 

- 1 .5 
- 2  



3 94 © M AT H E M AT I CAL ASS O C I AT I O N  O F  A M E R I CA 

Based on this evidence, one would think that the solution to this initial value 
problem is periodic and that the solution is very nearly a square wave . This solution 
and trajectory were produced using the default precision set at 16. NDSolve, like 
many numerical schemes, proceeds step-by-step in an adaptive way, attempting to 
satisfy a certain truncation error tolerance . With precision 16, NDSolve tries for 
6-digit precision at each step. The solution and trajectory shown in FIGURE 2 are for 
the same initial value problem, but with the precision set to 20, so that NDSolve tries 
for 10-digit precision. 

X 
1 

0.5 

- 0.5 

- 1  
F I G U R E 2 

2 
1 .5 

- 2  

1 

Certainly, the two solutions shown in FIGURES 1 and 2 are markedly different, but 
the trajectories appear to be identical. What is going on? With higher precision, we 
shouldn't see a change in the solution. The answer is that both solutions are 
correct-for a while . 

The initial values for this problem lie on a trajectory in the phase plane called the 
separatrix . As time increases, the points ( x(t ), x(t )) on the trajectory travel toward a 
saddle point at ( 1 ,  O). This saddle point is a stationary point for this equation. Hence 
once the trajectory reaches (1 ,  0) it should remain there forever since a stationary 
point represents zero velocity and zero acceleration. Unfortunately, the numerical 
algorithm being implemented by NDSolve eventually falls prey to truncation error 
(and perhaps roundoff error and propagation error) . The x-value eventually becomes 
either greater or less than 1 and the i-value becomes greater or less than 0 .  This puts 
the trajectory away from the stationary point and off it goes toward another saddle 
point at ( - 1 ,  0). Once the trajectory reaches this new stationary point, it remains 
there until the accumulated error "bumps it off' and away it goes again towards (1 ,  0). 
This is illustrated in FIGURE 3. 

In FIGURE 3, the first frame shows the phase plane at time t = 0. The starting points 
for eight different trajectories 

{ (0 ,  0) , (0 ,  1//2 ) , ( .25 , .25) , ( .5 , .5) , ( . 7 ,  - .7) , ( . 8 ,  - .8) , ( - .7 ,  .7) , ( - . 8 ,  .8) } 
are shown as small dots . The two dashed intersecting parabolas form the separatrix for 
this equation. It divides the plane into separate regions of distinct motion. For 
example, the motion represented by a starting point within the bounded region 
containing the origin is oscillatory and periodic, and hence all the trajectories are 
closed curves within this region. The starting point (0, 1/ /2) lies on the separatrix; 
the starting point (0.5, 0.5) lies very close to but not on the separatrix. 

The second frame in FIGURE 3 shows the trajectories for all starting points up to 
time t = 1 .5 .  The point (0, 0) is a stationary point (a center) and the trajectory never 
leaves this point. All the trajectories for the other starting points have begun to trace 
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out curves moving in a clockwise direction. In the third frame, we see that the 
trajectory for the starting point (0.5, 0 .5) has passed through the x-axis and the 
trajectory for (0, 1/ /2) has just about reached the saddle point (1 ,  0) where it will 
remain "stuck" for a while and the other trajectories continue to move. The trajectory 
for (0.25, 0.25) has curled around into the third quadrant and all the other trajectories 
are proceeding out of the graphics windows. 

The last frame shows the trajectories for time t = 20. The point representing the 
endpoint of the trajectory which started at (0, 1/ /2) remained stuck at (1 ,  0) until 
approximately time t = 13.2 when it gets "bumped off" by accumulated truncation 
error and now begins to move along the separatrix toward the other saddle point at 
( - 1 ,  0). It will eventually reach ( - 1 ,  0) and become "stuck" there for a while before 
it again gets "bumped off" at which time it travels along the separatrix toward (1 ,  0) to 
repeat the cycle again, thus giving the appearance of a square wave solution. 

This is all easier seen and appreciated in animation. A Mathematica 4.0 notebook, 
b l ackbox . nb,  is available at http : / /pax . s t . usm . edu / - f ay / proj ec t l /  
b l ackbox . .  nb . Users may modify the parameters to investigate this and other spring 
equations for various starting points . Mathematica generates a number of frames 
similar to those in FrGURE 3, which can then be animated to show the movement of the 
trajectories and the "sticking. "  
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It is interesting to repeat these observations , using higher and higher precisions in 
the NDSolve routine. The higher the precision, the longer the trajectory remains 
"stuck," as it should. It is also instructive to experiment with initial values different 
from but close to (0, 1/ J2). If one takes the initial values x(O) = 0 and x(O) = 
1/ v'2 - 10- 6 ,  the solution is oscillatory and a plot of it very closely resembles a 
square wave. It is · a good student exercise to predict the motion for starting points on 
other portions of the separatrix. The separatrix actually consists of six separate 
trajectories and two stationary (saddle) points . 

We recommend the interesting paper [3] for a more in-depth discussion of 
precision problems and how to predict over what time interval one can expect a 
numerical solution to be accurate. 
Acknowledgment. The authors thank the South African National Research Foundation and the Depait­
ment of Mathematical Technology of the Technikon Pretoria for support. TI1ey also thank an anonymous 
referee for supplying the Mathernatica module that we named blackbox . nb. 
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Spa i n  

Introduction It  i s  always a good practice to provide the physical content of an 
analytical result. The following algebraic inequality lends itself well to this purpose: 
For any finite sequence of real numbers r1 , r2 , . . .  , rN , we have 

( rf + rl + · · · + rJ )2 :-::; ( rf + r� + · ·  · +r� t ( 1 ) 
A standard proof is given in [1 ] .  An alternative proof follows from the isoperimetric 
inequality 

where A is the surface area and V the volume of any three-dimensional body. Setting 
the area A =  L,�� 147Tr2 and the volume V = L,�� 1(4j3)7Tr3 yields (1) .  

A bubble proof We give yet another proof, now using elements of surface tension 
theory and ideal gas laws to the formation and coalescence of bubbles .  This proof, 
found in [2], runs as follows . 

According to a well-known result in surface tension theory, when a spherical bubble 
of radius R is formed in the air, there is a difference of pressure between the inside 
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and the outside of  the surface film given by 

(2) 

where p0 is the (external) atmospheric pressure on the surface film of the bubble, p 
is the internal pressure, and T is the surface tension that maintains the bubble [3]. 

Suppose initially that N spherical bubbles of radii R1 , R2 , . . .  , RN float in the air 
under the same surface tension T and internal pressures p 1 , p 2 , . • .  , PN · According 
to (2), 

2T 
Pk = p0 + R , k = 1 , 2 , . . .  N .  

k 
(3) 

Now suppose that all N bubbles come close enough to be drawn together by surface 
tension and combine to form a single spherical bubble of radius R and internal 
pressure p ,  also obeying equation (2). When this happens , the product of the internal 
pressure p and the volume v of the resulting bubble formed by the coalescence of the 
initial bubbles is, according to the ideal gas law [3], given by 

pv = p 1v1 + . . · +pN vN , (4) 
where vk (k = 1 ,  2, . . .  , N )  are the volumes of the individual bubbles before the 
coalescence took place. For spherical bubbles ,  (4) becomes 

pR3 = p 1 Rf + · · · +pN Rt .  (5) 
Substituting the values of p and Pk given in (2) and (3) into (5), we obtain 

R3 - R3 - R3 - . . .  - R3 = 
2T

( R2 + R2 + . . .  + R2 - R2 ) (6) 1 2 N Po 
1 2 N · 

Now, if the total amount of air in the bubbles does not change, the surface area of the 
resulting bubble formed by the coalescence of the bubbles is always smaller than the 
sum of the surface area of the individual bubbles before coalescence . Thus, 

( 7) 
Since the potential energy of a bubble is proportional to its surface area, (7) is a 
physical condition that the surface energy of the system is minimal after the coales­
cence. 

It follows from (7) and the fact that p0 and T are positive constants that the left 
hand side of equation (6) satisfies 

( 8) 
The equality, which implies conservation of volumes, holds when the excess pressure 
in the bubble film is much less the atmospheric pressure . Combining (7) and (8) 
yields the inequality (1), which is also valid for negative numbers . 

Acknowledgment. 0. B. would like to thank Dr. Joel Hass for pointing out the isoperimetric proof of ( 1), 
and FAPESP for support under grant 97/14430-2. 
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The following results arose serendipitously from correcting a student's errors on a 
test in graph theory. A circulant graph problem required the student to compute x 3 
modulo 7 for each x = 1 ,  2, . . .  , 6. Instead, she computed these powers modulo 6. 
Interestingly, such exponentiation yields x3 = x modulo 6 for every x E {0, 1 , 2, . . .  , 5} . 
Equivalently, x 3  = x for every element x in the ring /2.6 . 

This result was somewhat unexpected. For suppose we seek an integer rn > 1 such 
that, for some fixed integer n > 1, x "  = x for all x in /l.m .  Remembering that ll.P is a 
field for prime p ,  we might think of Fermat's little theorem (see e .g . ,  [2]): x P = x for 
every x in ll.P . But primes are not the only possibilities for rn. In this note we 
characterize those pairs ( rn ,  n) with the following property P :  

The pair (rn ,  n )  has property p (the periodic property) if X 
n 

= X  

for all x in ll.m .  

We reserve the letter p to represent primes, and we will represent the elements of 
12.,. by {0, 1, 2, . . .  , ( rn - 1)} .  We know from above that (6, 3) has property P and that 
( p , p) has property P for all p .  But Fermat's little theorem yields a deeper result: in 
the field ll.P , x P - l  = 1 for all nonzero x. Furthermore, the multiplicative group of 12. P 
is cyclic, so, for odd primes, p - 1 is the least integer greater than 1 such that 
x r - l  = 1 for all nonzero x .  It follows that in ll.P , x l + k ( p - l) = x for k = 0, 1 , 2, . . . .  
Thus : 

The pairs ( p ,  1 + k ( p - 1)) have property P ,  and these are all 
the pairs with property P when rn = p .  

The pair ( p ,  p )  is obtained when k = 1 .  

( * )  

Now suppose that some x E /l.m has the property that x r = 0 for some r > 1 ,  and 
that x "  = x .  Clearly x 1  = x for all t = n2 , n3 , n4 , . . . .  Thus we can find t > r such that 
x 1  = x .  But then x r = 0 implies that x 1  = 0. Therefore, if (rn ,  n) has property P ,  ll. m  
cannot have a nonzero element x with one of its powers equal to 0 .  For example, 
22 

= 0 in /2.4 and 63 = 0 in /2.72 . So neither rn = 4 nor rn = 72 can occur in a pair with 
property P .  

More generally, suppose rn = p r1 p�2 
• • • pt '  with p 1 < p2 < · · ·  < pi and at least one 

ai > 1. Then the element q = p 1 p2 • • • pi in /2."' is nonzero, but q A = 0 where 
A = max{a1 , a2 , • • •  , a ;} .  Therefore : 

If (rn ,  n) has property P ,  then rn is squarefree . 

Now consider a square-free integer rn = p 1 p2 · · · p i , with p 1 < p2 < · · ·  < P ; ·  In 
this case, /l.m is naturally isomorphic to the ring-theoretic direct sum R = il. P 1 E9 il. P 2 
E9 • • •  ES il.p , (see, e .g . ,  [ 1]). Clearly if x = ( x 1 , x2 , . . .  , x) E R ,  then x "  = x if and only 
if xj' = xj in ll.P1 for all j = 1, 2, . . .  , i .  We know from ( * ) that ( p . ,  n) has property P 
if and only if n is an element of the sequence � = { 1 + k(  pi - 1�}}� o . Let I' be the 
least common multiple Ocm) of the set { p 1 - 1, p2 - 1, . . .  , p i - 1}, and let L be the 
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sequence { 1 + k 1'}/: � 0 . It is a straightforward set-theoretic exercise to show that 
n�� 1 P1 = L. 

MAIN RESULT. The pair (m, n) has properly P if and only if m is squarejree and n 
is an element of the sequence L defined above . 

Notice that when m = p ,  L gives the sequence of pairs ( p ,  1 + k(  p - 1)) from ( * ). 

Example . Consider m = 385 = 5 · 7 · 1 1 .  Then I'= lcm(4, 6, 10) = 60. So L = 
{ 1 ,  61 ,  121 ,  181 ,  . . .  } .  For instance, (385, 121) has property P .  

Remarks 

1 .  If n :::; m is desired, we can let the sequence L run from k = 0 to l m � 1 j , the 

integer floor of m � 1 . In the example above, with m = 385, the largest value of n 
( :::; m) is 

l 384 j 1 +  60 60 = 1 + 6( 60) = 361 . 

2. The problem can be solved more generally in the class of finite rings . Suppose R is 
a finite ring having the property that for some fixed n > 1 ,  x n = x for all x in R .  
Then R must be  a direct sum of  finite fields, each of  which has prime power order. 
An £-sequence similar to the one above can then be defined. 

3. Other generalizations are possible . Suppose we want to find all triples (m, n, k )  
that have the property P 1 :  For n > k > 0 ,  x n = x k for all x i n  the ring 7L m .  (The 
case k = 1 is discussed above .) Because 7Lm is decomposable into a ring-theoretic 
direct sum of rings with prime-power order, it suffices to consider triples for 7Lp ' ·  

The multiplicative group of units of ll_P , has order q = p 1 - 1 ( p - 1 )  (and in fact 
is cyclic for odd p), so x q  = 1 for every unit x. If x is not a unit, then p is a factor 
of x ;  therefore x 1  = 0. Thus x q + t  = x 1  for all x in 7L P' '  i .e .  ( p 1 ,  q + t, t) has 
property P 1 • The pair ( p ,  p) is obtained when t = 1 .  

For R = 7L p [1 E6 7LP� E6 . . .  E6 7Lr f ' '  let q1 = p}! -
1 ( p1 - 1), I'= lcm(q1 , q2 , . . .  , q), 

and T = max{t1 , t2 , • • •  , tJ Then x k/'+ T = xT  for all x in R and k = 0, 1 , 2 ,  . . . .  For 
example, let m = 32 · 53 = 1 125, R = 1L32 E6 7L53 ,  q1 = 6, q2 = 100, I'= 300, and 
T = 3. Then x 300 k + 3 = x 3 for all x in 7L , ,  k = 0, 1 ,  2, . . . .  In particular, 
(1 125, 303, 3) is a triple with property P 1 •  

Acknowledgment. The authors wish to thank the referee for helpful suggestions. 
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Among the many well-known unsolved diophantine problems is the following: 

THE PERFECT CUBOID PROBLE M  (PCP): Is there a rectangular box with all edges, 
face diagonals, and main diagonals integers? 

An extensive list of references on this problem appears in [I ] .  In this note, we show 
that the existence of a solution for the PCP is equivalent to the existence of a solution 
for an apparently different problem: 

THE PERFECT SQUARE TRIANGLE PROBLEM (PSTP): Is there a triangle whose 
sides are perfect squares and whose angle bisectors are integers? 

Let us first observe that the word "integers" can be replaced by the word "rationals" 
in the statement of the PSTP. In order to show that the existence of a solution to the 
PCP is indeed equivalent to the existence of a solution to the PSTP, assume first that 
the PCP has a solution. Let x ,  y, and z be the edges of a perfect cuboid and set 

( 1) 

Clearly, a, b ,  and c are the sides of a triangle and are perfect squares .  Let p = a + � + c 

be the semiperimeter of this triangle. Since 

we conclude that all four numbers p ,  p - a, p - b, and p - c are perfect squares. 
Let l a ,  l b , and l c be the lengths of the angle bisectors drawn from the angles opposite 
to the sides a, b, and c, respectively. It is well known that the lengths of these angle 
bisectors are given in terms of a, b ,  and c by 

ybcp( p - a) yacp ( p - b ) yabp ( p - c) 
la = 2 . b + c , lb = 2 . a +  c , lc = 2 . a +  b ( 3) 

Since all the numbers listed in (1) and (2) are perfect squares, it follows, by formula 
(3), that the triangle with sides a, b, and c is a solution of the PSTP (once "integers" 
has been replaced by "rationals" in the statement of the problem). 

Conversely, assume now that the PSTP has a solution. Let a, b ,  and c be the sides 
of a triangle that solves this problem. We may assume that gcd(a,  b, c) = 1. Indeed, 
otherwise, let d = gcd(a,  b, c). Since a, b, and c are all perfect squares, so is d. Then 
the triangle with sides ajd, bjd, and cjd still solves the PSTP, and 
gcd(ajd, bjd, cjd) = 1 .  
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By formula (3) and the fact that a ,  b ,  and c are perfect squares, i t  follows that all 

three integers 

4p ( p - a) = ( b + c ) 2 - a2 , 4p ( p - b ) = ( a +  c ) 2 - b2 , 

4p ( p - c) = ( a +  b ) 2 - c2 (4) 

are perfect squares .  Since gcd(a, b ,  c) = 1, it follows that not all of a, b ,  and c can be 
even. Reducing modulo 4 the integers listed in (4), one concludes that exactly one of 
the three numbers a, b ,  and c is even, and the other two are odd. It now follows that 
p is an integer, and formula (4) implies that all three integers 

p ( p - a) , p ( p - b ) , p ( p - c) (5) 

are perfect squares. We now show that gcd( p - a, p - b ,  p - c) = 1 .  Indeed, let 
e = gcd( p - a, p - b ,  p - c). Clearly, e / / ( p - b) + ( p - c) = a. By a similar argu­
ment, one concludes that e I b and e I c. Since gcd(a,  b, c) = 1, it follows that e = 1 .  
Since all three numbers listed in (5) are perfect squares, s o  i s  their greatest common 
divisor. Hence, 

gcd( p ( p - a) , p ( p - b ) , p ( p - c) ) = pe = p 

is a perfect square . It now follows (again from the fact that the three numbers in (5) 
are perfect squares) that all four numbers p , p - a, p - b ,  p - c are perfect squares .  
If we now set 

then one concludes easily that x, y, and z are the edges of a perfect cuboid. 
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Proposa l s  

To be considered for publication, solutions 
should be received by May 1,  200 1 .  

1 608. Proposed by William D .  Weakley , Indiana-Purdue University at Fort Wayne, 
Fort Wayne, Indiana . 

Let b be a positive integer, b > 1 .  We call a positive integer "onederful" in the 
base b if it divides some integer whose base b representation is all ones . Which 
positive integers are onederful in the base b?  

1 609. Proposed by  Yanir A .  Rubinstein , student , Technion-Israel Institute of 
Technology , Haifa, Israel. 

Evaluate 

inf 
a , b E C  

Im(aii h • O  

( J a J + J b J ) ( J a J + J b J  + J a  + b J ) 
l im( ab) I 

1 61 0. Proposed by Hassan A. Shah Ali , Tehran, Iran. 

Place n black pieces and n white pieces on distinct points on the circumference of 
a circle . 

(a) Prove that for each natural number k ::o;; n ,  there exists a chain of 2 k  consecutive 
pieces on the circle of which exactly k are black. 

We invite readers to submit problems believed to be new and appealing to students and teachers of 
advanced undergraduate mathematics. Proposals must, in general, be accompanied by solutions and by any 
bibliographical information that will assist the editors and referees. A problem submitted as a Quickie 
should have an unexpected, succinct solution. 

Solutions should be written in a style appropriate for this MAGAZINE. Each solution should begin on a 
separate sheet containing the solver's name and foll address. 

Solutions and new proposals should be mailed to Elgin Johnston, Problems Editor, Department of 
Mathematics, Iowa State University, Ames, IA 5001 1 ,  or rooiled electronically (ideally as a LATEX file) to 
j ohnston@math . iastate . edu . Readers who use e-mail should also provide an e-mail address. 
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(b) Prove that there are at least two such chains that are disjoint if 

k 5. hn + 2 - 2 .  

1 61 1 .  Proposed by Ho-joo Lee, student , Kwangwoon University , Seoul, South Korea. 

Let P be in the interior of L::..ABC,  and let lines AP, BP, CP intersect the sides 
BC, CA, AB in L, M, N, respectively. Prove that P is the centroid of L::..ABC if 

[ APN ] = [ BPL] = [ CPM ] ,  

where [ · ] denotes area. 

1 61 2 . Proposed by Ho-joo Lee, student , Kwangwoon University , Seoul, South Korea . 

Let P be in the interior of 1::.. ABC,  and let lines AP, B P ,  C P intersect the sides 
BC,  CA, AB in L, M, N, respectively. Prove that P is the centroid of L::..ABC if 

[ APN ] + [ BPL] + [ CPM ] = [ APM ] + [ BPN ] + [ CPL ] ,  

where [ · ]  denotes area. 

Qu i ck ies 

Answers to the Quickies are on pages 4 1 0. 
Q905 . Proposed by Murray S .  Klamkin ,  University of Alberta, Edmonton , Alberta, 
Canada. 

Determine the maximum volume of a tetrahedron given the lengths of three of its 
medians. 

Q906. Proposed by Razvan Tudoran, University of Timi§oara, Timi§oara, Romania . 

Let n and k be positive integers with k < n .  Prove the inequality 

( � )  5. ( 1 + n � k ( I + ln( n - k ) ) r - k 

So l ut ions  

A Triangular Number of Triangles December 1 999 
1 584. Proposed by Ira Rosenholtz , Eastern Illinois University , Charleston, Illinois . 

Let n be a positive integer, and let L::.. n be the set of ordered triples of positive 
integers which are the side lengths of a nondegenerate triangle of perimeter n. Show 
that the cardinality of L::.. n is a triangular number. 
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I. Solution by Michael Vowe, Therwil, Switzerland. 

Represent an element of f:).n by (a ,  b ,  n - a - b) E �3 . The triangle inequality 
implies the conditions a <  n/2, b < n/2, and a +  b > n/2. Thus, the cardinality of 
/:).,. is the number of lattice points in the interior of the isosceles right triangle 
bounded by the lines a =  n/2, b = n/2, and a +  b = n/2. This number is clearly a 
triangular number. In particular, if n is odd, then 

If n is even, then 

I I n - 1  1 n - 1 n + 1  /:). = 1 + 2 +  . .  · + -- = - -- --n 2 2 2 2 ' 

I I n - 4  1 n - 4 n - 2  f). = 1 + 2 +  . .  · + -- = - -- --n 2 2 2 2 ' 

II . Solution by Jose H. Nieto , Universidad del Zulia, Maracaibo ,  Venezuela . 

We will show that 

f). - { i ( i - 2) ( i - 1 ) I n l - 1 n - 1 n + 1  
2 _2 _ __ 2_ 

First we will establish the recurrence relation 

if n is even , 

if n is odd . 

if n is even , 

if n is odd . 

To prove this, note that if (a ,  b ,  c) E f). n  then (a - 1 ,  b - 1 ,  c - 1) either belongs to 
1).,. _ 3 or represents the side lengths of a degenerate triangle of perimeter n - 3. 
Since the perimeter of a degenerate triangle must be even, if n is even we conclude 
that I f). ,. I = I f:).n _ 3 l .  If n is odd, let m = (n - 3)/2. If m is even, the possible 
degenerate triangles of perimeter 2m have side lengths (without regarding the order) 
(m, m, 0), (m, m - 1, 1), . . .  , (m, m/2 + 1, m/2 - 1), (m,mj2,mj2). Taking the order 
into account we observe that each of these triples may be permuted in 6 ways, except 
the first and the last, which may be permuted in only 3 ways . Therefore we obtain 
6(m/2 - 1) + 3 · 2 = 3m =  3(n - 3)/2 ordered degenerate triples. If m is odd, the 
possible degenerate triangles of perimeter 2m have side lengths (without regarding 
the order) (m, m, 0), (m, m - 1, 1), . . .  , (m, (m + l)j2, (m - 1)/2). Taking the order 
into account we observe that each of these triples may be permuted in 6 ways, except 
the first one, which may be permuted in only 3 ways. Summing up, we obtain again 
6(m - l)j2 + 3 = 3m =  3(n - 3)/2 ordered degenerate triples .  

Now it is straightforward to prove our claim by induction. It is true for n = 1 ,  
n = 2, and n = 3 .  Let n > 3 and assume the result valid for triangles with perimeter 
less than n .  

If  n i s  even, then n - 3 i s  odd and by the recurrence relation and the induction 
hypothesis we have 

1 /::). 1 = 1 1). l = _.!. n - 4 n - 2
= ..!. {� - 2) {� - 1 ) n n - 3 2 2 2 2 2 2 ' 
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On the other hand, if n is odd we have 

I �n I = I �n- 3 1 + i ( n - 3) = � ( n ; 3 
- 2) ( n ; 3 

- 1 ) + i ( n - 3) 

1 n - 1 n + 1 
= 2 -2 _ __ 2_ 

III. Solution by  Jim Delany , California Polytechnic State University, San Luis Obispo , 
California. 

We claim that I �2m I = (m - 2)(m - 1)/2 and I �Zm + l l = m(m + l)j2. 
Let D" be the set of positive integers (a, b, c) for which a + b + c = n and 

a =  b = c (mod 2). In light of the triangle inequality the mapping from ��� to D11 
given by 

( a ,  f3 ;y ) � ( n - 2 a, n - 2 f3 ,  n - 2'}' ) 

is a bijection, so I �n l  = I Dn ! , We compute the latter, even perimeters first. 
If (a ,  b, c) E D2m , then a, b, c are all even. Thus, (a ,  b, c) = (2 i ,  2j , 2 k ), where i ,  

j ,  k are positive integers such that i + j + k = m .  The number of such triples i s  the 
coefficient of x m in the generating function 

3 x 3 
oo ( m - 1) ( m - 2) 

( x + x z + x 3 + . .  · ) = . 
3 = L 2 x m . 

( 1 - x ) m � 3 

Therefore, I D2m l = (m - 2Xm - 1)/2. For odd perimeters , we use the bijection from 
D2m+ l to D2m+4  given by 

( a ,  b ,  c) � ( a  + 1 ,  b + 1 ,  c + 1) 

to conclude I D2m + l l = I DzmH I = m(m + 1)/2. 
Also solved by Michael H.  Andreolt, Michel Bataille ( France), ].  C .  Binz ( Switzerland), Jean Bogaert 

( Belgium), Keith Chavey, Michael P. Cohen, Leo Comerford, Con Amore Problem Group ( Denmark ), 
Daniele Donini ( Italy), Kurt Dresner (student), Arthur H. Foss, Marty Getz and Dixon Jones, Georgi D. 
Gospodinov ( student), Robert Heller , Kathleen E. Lewis, Kevin McDougal, Peter Schumer, Heinz-Jiirgen 
Seiffert (Germany), Skidnwre College Problem Group , Southwest Missouri State University Problem 
Solving Group , Philip D. Straffin ,  Monte ]. Zerger, Li Zhou , and the proposer. There was one incorrect 
solution. 

A Timely Sum, but not a Square December 1999 

1 585 . Proposed by Shahin Amt;ahov, Ankara, Turkey . 

Prove that the number 

is not a perfect square . 

I .  Solution by Marty Getz and Dixon Jones, University of Alaska Fairbanks, Fair­
banks, Alaska , 

More generally, we prove that 

N == PE1 ( E k p - l ) c p - 2) n - l 
n � l  k � l  

is not a perfect square for any prime p congruent to 5 or 7 modulo 12. 
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For p prime and 1 � k < p ,  we have k P - 1 = 1 (mod p). Hence 
p - 1  

N =  L n( - 2) " - 1 (mod p ) . 
n = 1  

Differentiating the identity I:�,:� x n = (1 - x P )j(1 - x )  yields 

P f.1 

nx n - 1 = 1 - px P - 1 + ( � - 1) x P • 
n = 1  ( 1 - x ) 

Thus, letting x = - 2 and deming the denominator, 

9 N = 1 - p ( - 2) P - 1 + ( p - 1) ( - 2) P = 3 (mod p )  , 

or 3N = 1 (mod p). 
We conclude that 3 and N are either both quadratic residues or both quadratic 

nonresidues modulo p .  In terms of the Legendre symbol, the law of quadratic 
reciprocity states that, for odd primes p and q ,  ( � )  = ( f ) unless both primes are 

congruent to 3 modulo 4, in which case ( � )  = - ( f ) .  Hence, if p = 5 (mod 12), 
we have 

( % ) = ( f ) = ( � ) = - l .  

If p = 7 (mod 12), we have 

( % ) = - ( f ) = - ( � ) = - 1 .  

In both cases 3 is a quadratic nonresidue modulo p ,  completing the proof. 

II .  Solution by ]. C. Binz , University of Bern, Bern, Switzerland. 

Set 

N := :�� L�
1 
P998 ) 1997" -

1 = :� c� 1997n - 1 ) p998 . 

We observe that 1997 = 2 (mod 7), P998 = 1 (mod 7) if ( k ,  7) = 1, and P998 = 
0 (mod 7) if 7 1  k . It follows that 

1998 ( 1998 

) 
1998 

N = L L 2 n - 1 = L ( I - 2 k - 1 ) 
k = 1  n = k  k = 1  

( k , 7) = 1  ( k , 7) = 1  

1998 [ 1998/7 J 
= E ( 1 - 2 k - 1 ) - E ( 1 - 27k - 1 ) 

k = 1  k = 1  

1998 285 1998 

= E ( 1 - 2 k- 1 ) - E ( 1 - 2 k - 1 ) = E ( 1 - 2 k - 1 ) 
k = 1  k = 1  k = 286 

= ( 1998 - 285) - (2 1998 - 2285 ) = 5 - 0 =  5 (mod 7) . 
Because 5 is not a square modulo 7, N cannot be a perfect square. 
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Comment. Georgi Gospodinov proved the assertion in a computation modulo 16 
similar to the two above. 

Also solved by Michel Bataille ( Fmnce), Brian D. Beasley, David Clarke, Con Anwre Problem Group 
( Denrruzrk), Daniele Donini ( Italy), Georgi D. Gospodinov ( student), Heinz-]ilrgen Seiffert (Gerrruzny), 
and the proposer. 

A Comparison of Two Integrals December 1999 

1 586. Proposed by Gerald A.  Edgar, Ohio State University, Columbus, Ohio . 

Let w be a nonnegative, continuous , and nonincreasing function on [0, oo) . Let g be 
a nonnegative, continuous function on [0, oo) . For a given a E (0, 1), assume that 

a xg ( x )  � [min{ w( t ) , g ( x ) } dt for all x > 0 .  
0 

(a) Show that there is a positive constant c, , independent of w and g ,  such that 

(b)* Find the smallest possible value of c, . 

(* Neither the proposer nor the editors have provided a solution to (b). Solvers of 
only (a) will be acknowledged.) 

Composite of solutions due to the Proposer and the Editors . 

(a) For K E [0, 1), we have 

so that 

a xg ( x )  � [min{ w ( t ) , g ( x ) }  dt � 1 Ka x
g ( x ) dt + { w ( t ) dt 

0 0 K a x 
� K a xg ( x )  + ( 1 - K a ) xw ( K a x ) , 

1 - Ka  g ( x ) � ( 1 - K ) a w( Ka x ) 

for x > 0. Therefore, 

1oo 1 - Ka  100 1 - Ka  100 g ( x ) dx � ( 1 - ) 
w( K a x ) dx = ( 2 ) 2 w ( x ) dx . 

0 K a 0 K - K a 0 

We find that K = (1 - VI - a ) /a < 1 minimizes the fraction, hence 00 1 00 1 g ( x ) dx �  2 1 w( x ) dx . 
o ( 1 - h - a )  o 

Although we cannot answer part (b), we obtain a lower bound for c, . Choose any 
continuous, positive, nonincreasing, and integrable w( x )  and set g ( x )  := w( a x ). 
Then 

fmin{ w ( t ) , g (  x ) }  dt = 1 "' x
g ( x )  dt + r w ( t )  dt 

0 0 a x 

= a xg ( x ) + {w( t ) dt :?. a xg ( x ) .  
a x  
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Furthermore, 
00 00 1 00 1 g ( x ) dx = 1 w( ax ) dx = - 1 w( x ) dx ,  

o o a o 

so ca � 11a. For comparison, 

as a �  0. 

Constructing Foci of Conics December 1999 
1 587. Proposed by Kevin Ferland, Bloomsburg University, Bloomsburg , Pennsylva­
nia, and Florian Luca, Czech Academy of Science, Prague, Czech Republic. 

Consider constructions using straightedge and compass . Prove or disprove the 
following: 

(a) Given any ellipse, the foci can be constructed. 
(b) Given any hyperbola, the foci and asymptotes can be constructed. 
(c) Given any parabola, the focus and directrix can be constructed. 

Solution by David M. Bloom, Brooklyn College of CUNY, Brooklyn, New York . 
All of the constructions are possible. 
(c) The construction of the focus of a given parabola was a problem on the 1955 

Putnam examination. One solution follows . We may assume the parabola has equation 
4cy = x 2 • If a line y = mx + b cuts the parabola at A; = ( x ; ,  y;) (i = 1 ,2), then 
X ; =  2cm ± 2Vc2m2 + cb and hence the midpoint of A1 A2 has x-coordinate 2cm, 
which is independent of b .  It follows that if we draw two parallel chords of the 
parabola, then the line L' joining their midpoints is parallel to the axis L of the 
parabola. We construct L as the perpendicular bisector of any chord of the parabola 
perpendicular to L' . Then the vertex V is the intersection of L and the parabola, and 
the x-axis is the perpendicular to L at V. If we now draw the line of slope 112 
through V, intersecting the parabola a second time in W, then the line through W 
perpendicular to L will meet L at the focus F. 

To construct the directrix, locate point Q on L so that F and Q are equidistant 
from V and then draw the perpendicular to L through Q. 

(a) The construction for the ellipse i s  based on a similar geometric fact: The line 
joining the midpoints of two parallel chords will pass through the center of the ellipse. 
To show this, assume the ellipse has equation x 2 I a2 + y 2 lb 2 = 1 . Then the midpoint 
of the chord satisfying y = mx + r is 

( Xo , Yo ) = ( b:::7:2 '  b2 !::m2 ) ' 
so that the ratio y0lx0 = - b2 l(a2m) depends only on m and not on r . Thus, the 
line through the center C having slope - b2 I a 2m will pass through the midpoints of 
all chords of slope m, and our assertion follows. We construct the line between the 
midpoints of any two parallel chords of the ellipse; the center C is the midpoint of the 
chord, call it AB , determined by this line . The circle through A and B with center C 
intersects the ellipse in two more points , A' and B '  (unless A and B are fortuitously 
vertices of the ellipse). The perpendicular bisectors of AA' and AB ' are then the axes 
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of the ellipse, which in tum give us the major vertices v1 and v2 and the minor 
vertices W1 and W2 . Finally, the foci are the intersections of the major axis with the 
circle having center wl and radius cv1 . 

(b) For the hyperbola, which we may assume has equation x 2 ja2 - y 2 jb2 = 1 ,  the 
center C , major axis L, and vertices Y; are found the same way as for the ellipse. We 
then have CV; = a  and the distance from C to the foci is c = (a2 + b2 )112 , so we can 
construct the foci once we can construct b . To construct b ,  locate P on L so that 
PC = 2 a; then construct the perpendicular to L at P, with Q one of its intersections 
with the hyperbola, so that PQ = b/3 . Construct R on L such that L PQR = 30 ° .  

Then PR = b and we may construct the foci. Because the slopes of the asymptotes are 
± b /a, the asymptotes are now constructible as well. 

Also solved by Michel Bataille ( France), Con Anwre Problem Group ( Denmark), Neela Lakshmanan, 
Peter Y. Woo , and the proposers . There was one incorrect solution. 

An Iterative Sequence of Determinants December 1999 

1 588. Proposed by Emeric Deutsch , Polytechnic University, Brooklyn , New York . 
Let a =  (a0 , a1 , a2 , . . .  ) be any sequence of complex numbers . Define the sequence 

transformation T by T(a) = (b0 , b 1 , b2 , . • .  ) , where 

ao al a2 an - 1 an 
- 1  ao a 1 an - 2 an - l  

b = 
0 - 1  ao an - 3 an - 2 n 
0 0 0 ao a1 
0 0 0 - 1  ao 

Find a determinant expression for the nth term of the sequence y<ql(a), where q is a 
positive integer. (Here y(q)  denotes the q-fold composition of T.) 

Solution by Li Zhou , Polk Community College, Winter Haven , Florida . 
We will show that if y<ql(a) = (c0 , c1 , c2 , . . .  ), then 

qao qal qa2 qan - l 
- 1  qao qa1 qan - 2 
0 - 1  qao qan - 3 c = n 
0 0 0 qao 
0 0 0 - 1  

Clearly, b0 = a0 . We claim that 

n - l  

bn = an + E bk an - 1 - k . 
k = O  

an 
an - l  
an - 2 

al 
ao 

By expanding bn in its last column, we obtain the claim by induction. Set 
00 00 

a( x ) = E an x " , b ( x ) = L bn x n , c( x ) = L Cn x " . 
n = O  n = O  n = O  



4 1 0 © M AT H E M A T I C AL A S S O C I AT I O N  O F  A M E R I CA 

Then b( x )  = a( x)  + xb( x)a( x ), hence 

a( x )  
b(  X ) =  1 ( ) . - xa x 

By induction on q ,  it follows that 

a( x )  
c ( x ) = 1 ( ) , - qxa x 

i .e . ,  c( x)  = a( x )  + qxc( x )a( x ). Therefore, 
n - 1  

c, = a, + L ck ( qan - 1 - k ) , 
k = O  

which can b e  written in the determinant form as claimed. 
Also solved by f. C. Binz ( Switzerland), David Callan , and the proposer. 

An swers 

Solutions to the Quickies on page 403 .  
A905. Let ABCD be the tetrahedron, mA , m 8 , me , and mv the median lengths, the 
last three given, and G the centroid. The medians are concurrent and are such that 
AG = 3mA/4 , BG = 3m 8 /4 , CG = 3mc/4 , and DG = 3mA v/4 . Thus the volume of 
ABCD is four times the volume of GBCD. Furthermore, the latter volume will be a 
maximum when BG, CG, and DG are mutually orthogonal. Hence the maximal 
volume is 4( BG · CG · DG/6) = 9m8 mc mv/32 . 

This easily generalizes to determining the maximum volume of an n-dimensional 
simplex given the lengths of n of its medians. 

A906. From the-arithmetic mean-geometric mean inequality, we have 

( n ) = 
( k + 1) ( k + 2) . .  · ( k + n - k ) 

k ( n - k ) ! 

= ( 1 + k ) ( 1 + i )  . .  · ( 1 + n � k ) 
( k ) ( k ) n - k 

:::;;
( ( 1 + k ) +  1 + 2 + . .  · + 1 + n=T ) 

n - k  

( k ( 1 1 ) ) n - k 
= 1 + -- 1 + - +  . . .  + --. .  n - k 2 n - k  

The inequality now follows from 

1 1 �n -k 1 1 + - + . .  · + -- :::;; 1 + - dx = 1 + ln( n - k ) .  2 n - k 1 x 
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Devlin, Keith, The Math Gene: How Mathematical Thinking Evolved and Why Numbers 
are Like Gossip, Basic Books, 2000; xvii + 328 pp, $25. ISBN D-465-01618-9. 

Most of the U.S .  believes that there is a "math gene" ; if you don't have it, you can't do math 
and shouldn't have to try (the same goes for a "science gene" ) .  Most of the rest of the world 
is convinced that people who try hard can do math. Despite the overwhelming explanatory 
success of this alternative (see any international comparison of math achievement) ,  belief 
in a "math gene" persists. Unfortunately, the title of Devlin's book will tend to reinforce 
that belief, despite his disclaimer that there is no DNA sequence for mathematical ability 
and his main thesis that we all have "the math gene." He means an "innate facility for 
mathematical thought," and he details an argument that language and mathematics both 
proceeded from the same developments in the brain. "Thinking mathematically is just a 
specialized form of using our language facility." The book is written in a conversational 
style, rich with metaphors and examples, and it does a good job of explaining the nature of 
mathematics as the science of patterns. Devlin characterizes mathematics as just one kind 
of "off-line thinking" (i.e . ,  abstraction) about a "world of internally generated symbols." 
But if we all have "the math gene," why do so many claim to find math impossible? Be­
cause it takes practice and hard work (concentration) , and because of the "degree of rigor 
required in its reasoning processes."  Lack of interest is the main difference between those 
who can do math and those who say they can't,  says Devlin. Why should we encourage that 
interest? Not because you need math to function in a technological society, but because 
studying it develops scientific habits of mind and the ability to learn and adapt to changing 
circumstances. Devlin also cites the Riley Report ( "Mathematics and Future Opportu­
nities ," http : I /wwv . ed . gov /pubs/math/part3 .  html) for concrete "benefits" from taking 
more mathematics: a greater chance of going to college and succeeding there, especially for 
children from low-income families. But such claims are like those that learning a musical 
instrument will make a child a better student-association does not imply causation. 

Hass, Joel, General double bubble conjecture in .IR3 solved, Focus 20 (5) (May/June 2000) 
4-5 . Stewart, Ian, Bubble trouble: It's taken 1 70 years, but now the problem is solved, New 
Scientist (25 March 2000) 6. Cipra, Barry, Dana Mackenzie, and Charles Seife, Rounding 
out solutions to three conjectures, Science ( 1 7  March 2000) 191Q-1 9 1 2 .  

Michael Hutchins (Stanford University) , Frank Williams (Williams College) , Manuel Ritore 
and Antonio Ros (University of Granada) have announced a proof of the general double 
bubble conjecture in R3 . The conjecture says that the surface enclosing two given volumes 
that has smallest area consists of two bubbles connected by a common surface. The proof 
proceeds by showing that other candidates for optimality could be deformed into other 
feasible solutions with smaller surface area, i .e . , cannot be even locally optimal. Under­
graduate students of Morgan's had already proved the double bubble conjecture in two­
and in four-dimensional space. 

4 1 1 
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Peterson, I . ,  The power of partitions: Writing a whole number as the sum of smaller 
numbers springs a mathematical surprise, Science News 157 ( 1 7  June 2000) 396. http : 
//wWW' . s c iencenews . org/20000617/bob2 . asp . Ono, Ken, Distribution of the partition 
function modulo m, Annals of Mathematics 151  (January 2000) 293-307 (MR 2000k: 1 1 15) . 
The genius factor, The Penn Stater (July/August 2000) 28 .  

The number of partitions p(n) of a positive integer n is  the number of ways to express it 
as a sum of (unordered) positive integers. Srinivasa Ramanujan proved that starting at a 
certain integer, every fifth integer thereafter has its number of partitions divisible by 5, viz . ,  
p(5n + 4 ) = 0 mod 5 .  The same holds for every seventh (divisible b y  7) , every eleventh (by 
1 1 ) , and similarly for multiples or powers of 5, 7, and 1 1 .  In the 80 years since, only one or 
two other isolated patterns of the kind p( kn + l) = 0 mod m (called congruences) have been 
found. Are they just flukes? No; we now know that there is a congruence for every prime 
(except possibly 2 and 3) , as proved by Ken Ono (Penn State University and University of 
Wisconsin) ,  and for every composite made from those primes, as proved by Scott Ahlgren 
(Colgate University) . Ono's proof was not constructive; but an undergraduate at Penn 
State, Rhiannon L. Weaver,  found an algorithm for generating examples. 

Mackenzie, Dana, May the best man lose, Discover 21 ( 1 1 ) (November 2000) . http : II 
WWW' . dis cover . com/nov _00/f eatbestman . html . http : //WWW' . math . nwu . edur d_saari/ . 
Saari, Donald G . ,  and Maria M. Tataru, The likelihood of dubious election outcomes, 
Economic Theory 13 (2) ( 1999) 345-363 . Saari, Donald G . , Mathematical structure of 
voting paradoxes, I: Pairwise votes, Economic Theory 15 ( 1 ) (2000) 1-53;  II:  Positional 
voting, 55-1 02.  Saari , Donald G . ,  and Fabrice Valognes, Geometry, voting, and paradoxes ,  
this MAGAZINE 78 (October 1998) 243-259. 

Is something wrong with the U.S.  election system? Did the stunning closeness of the 2000 
presidential election challenge your complacency, increase your dissatisfaction, or confirm 
your contentment with winning by plurality (no runoff) and winner-take-all (for electoral 
votes in almost all states)? Two voting theorists, mathematician Donald Saari (North­
western University) and political scientist Steve Brams (New York University) ,find the 
presidential primary and election system fundamentally flawed. What should we do in­
stead? Brams favors approval voting (used by the MAA in some elections) but Saari favors 
the B orda count (each voter ranks the candidates and the ranks are added over all voters ) .  

Frucht, William (ed . ) ,  Imaginary Numbers: An Anthology of Marvelous Mathematical Sto­
ries, Diversions, Poems, and Musings , Wiley, 2000; xvi + 327 pp, $ 16 .95 (P) . ISBN Q-471-
39341-X. 

The last anthology of prose and poetry about mathematics was Rudy Rucker's Mathenauts: 
Tales of Mathematical Wonder ( 1987) ; but the spiritual predecessors of this book are Clifton 
Fadiman's Fantasia Mathematica ( 1958) and The Mathematical Magpie ( 1962) (both in 
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ukrym101/t ie/aps97tie . html . 

Just in time for last-minute holiday shopping! :  complete instructions on every way to tie a 
necktie, plus advice on good taste (which knot goes best with a particular tie and collar?) . 
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Letters to (and from) the Editor 
Dear Editor: 

In the note "Edge-length of Tetrahedra" (June 2000) , Hans Samelson proves that 
3E(6.') < 4E(6.) , where b.' is a tetrahedron contained in the tetrahedron b., and 
E(6.) denotes the total edge length of 6., etc. At the end the author notes that his 
proof generalizes to simplices and gives the corresponding inequalities depending 
on whether or not the dimension is even or odd. 

The following much more general result is known (see C. Linderholm, An inequality 
for simplices , Geom. Dedicata 21 (1986) , 67-73) : 

Let m E { 1 ,  2, . . .  , n} and let Mm,  M:,. be the total m-dimensional content of all 
the m-dimensional faces of the n-dimensional simplices S, S' , respectively. Then if 
S' C S and n + 1 = q (m + 1)  + r ,  where q and r are integers with 0 � r � m, 

I qm+l-r (q + lt Mm < Mm l , n +  - m  

and the fraction on the right hand side is the best possible. There can be equality if 
we allow degenerate simplices. 

Murray S. Klamkin 
University of Alberta, Edmonton, Canada T6G 2G 1 

Dear Readers : 

With this issue I complete my 5-year term as Editor of Mathematics Magazine; the 
new Editor is Frank Farris , of Santa Clara University. Serving as Editor has been 
a pleasure and a privilege. Bringing the Magazine to print requires an enormous 
amount of work-the large majority of it done by others than the Editor. It 's my 
pleasure to thank some of them. 

Authors deserve our greatest thanks ; over 300 of them have published pieces in the 
Magazine in the last 5 years. (Many more authors submitted articles we were unable 
to publish , but often for reasons having less to do with merit than with space. )  Over 
200 referees also served during the same period; their careful, generous, and too­
little-requited advice and effort materially improved almost every Article and Note 
published in the Magazine. Associate editors (listed on the first inside page of each 
issue) selflessly and reliably contributed hard work and sage counsel . Harry Wald­
man, Journals Editorial Manager at the MAA, skillfully and unflappably handled 
production and other tasks large and small. Mary Kay Peterson, my editorial assis­
tant at St. Olaf, brought (much-needed) organizational, technical , and grammatical 
expertise and efficiency to our office. 

Finally, I thank readers. Your general interest , meticulous reading, letters to the 
editor (pro and con) , phone calls , and e-mails have all improved the product , and 
helped complete the circle of communication for which the Magazine exists. 

Paul Zorn 
Saint Olaf College, Northfield, Minnesota 55057 
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Teaching First: A Guide for New Mathematicians 

Teal!hing Firgf 
A GUIDE FOR NEW MATHEMATICIANS 

Thomas W. Rishel 
Series: MAA Notes 

In this volume Thomas Rishel draws on his nearly forty years of 
teaching experience to address the "nuts and bolts" issues of teach­
ing college mathematics. This book is written for the mathematics 
TA or young faculty member who may be wondering just where 
and how to start. Rishel opens the readers' eyes to pitfalls they may 
never have considered, and offers advice for balancing an obliga­
tion "to the student" with an obligation "to mathematics:' 
Throughout, he provides answers to seemingly daunting questions 
shared by most new TAs, such as how to keep a classroom active 
and lively; how to prepare writing assignments, tests, and quizzes; 
how exactly to write a letter of recommendation; and how to pace, 
minute by minute, the "mathematical talks" one will be called upon 
to give. 

This book is Rishel's answer to those who may suggest that good teaching is innate and cannot be 
taught. This he emphatically denies, and he insists that solid teaching starts with often overlooked 
"seeming trivialites" that one needs to master before exploring theories of learning. Along the way he 
also covers the general issues that teachers of all subjects eventually experience: fairness in grading, 
professionalism among students and colleagues, identifying and understanding student "types': tech­
nology in the classroom. All of the subjects in this book are considered within the context of Rishel's 
experience as a mathematics teacher. All are illustrated with anecdotes and suggestions specific to the 
teaching of mathematics. 

Teaching First is a comprehensive guide for a mathematics TA, from the first semester preparations 
through the unforseen challenges of accepting a faculty position. Its aim is to prepare the new TA 
with clear suggestions for rapidly improving their teaching abilities. 

Catalog Code: NTE-54/JR 1 50 pp., Paperbound, 2000 ISBN 088385- 165-2 List: $ 19.00 MAA Member: $ 1 5.00 

Credit Card No. _______________ _ 

1.tu•u11:» __________________ Signature. ___________ � 

Zip ______ _ 

Qty Price $. ____ _ 
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Noncommutative Rings 
I . N .  Herstein  
This corrected reissue o f  a classic 
monograph presents a cross-section of 
ideas, techniques, and results that give the 
reader an idea of that part of algebra which 
concerns itself with noncommutative 
rings. This book is not intended as a treatise 
on ring theory. Instead, the intent is to 
present a certain cross-section of ideas, 
techniques, and results that will give the 
reader some inkling of what is going on 
and what has gone on in that part of 
algeb r a  which c o n c e r n s  itself with 
noncommutative rings . 

Contents: 1 .  The Jacobso n  Radical; 

2. Semisimple Rings; 3. Commutativity 
Theorems; 4. Simple Algebras; 

5 .  Representations of Finite Groups; 

6.  Polynomial Identities; 7.  Goldie's 
Theorem; 8. The Go lod- Shafarevitch 
Theorem . 

Series: Carus Mathematical Monographs 

Noncommutative Rings is a classic. It is fair to say 
that almost every practicing ring theorist has, at some 
time, studied portions of this book. Herstein's style 
and grace make ring theory especially attractive. 

-Lance W. Small 
University of California, San Diego 

This beautiful book is the result of the author's wide 
and deep knowledge of the subject matter combined 
with his gift for exposition . . .  The well-selected material 
is offered in an integrated presentation of the structure 
theory of noncommutative (associative rings) and its 
applications. 

This book will appeal to many a reader. It would be 
wonderful as a textbook, and in fact, it is based on the 
author's lecture notes . . .  Only people looking for the most 
general form of a particular theorem are advised to turn 
to other books, but those interested in studying or 
reviewing its subject matter or looking for a rounded 
account of it could do no better than choosing this book 
for this purpose. 

-AMS Bulletin 
Catalog Code: CAM- 15/JR 202 pp., Hardbound, 1968, revised 1996, ISBN 0-88385-01 5-x List: $34.00 MAA Member: $26.00 

Name Credit Card No .. ______________ _ 

Address. ______________ Signature'-----------� 

Qty· __ _ Price $. _____ Amount ""------ :/ 

Zip ______ _ Shipping and Handling ""-----­

Catalog Code: CAM-15/JR 

(shipped via UPS): $2.95 for the first book, and $ 1 .00 for each • additiional book. Canadian orders: $4.50 for the first book and $1 .50 for each . additiional book. Canadian orders will be shipped within 10 days of receipt of 
the fastest available route. We do not ship via UPS into Canada 

customer specially requests this service. Canadian customers who 
UPS shipment will be billed an additional 7% of their total order . • Clvers1oas Orders: $3.50 per item ordered for books sent surface mail. Airmail 

available at a rate of $7.00 per book. Foreign orders must be paid in 
through a US bank or through a New York clearinghouse. Credit 

orders are accepted for all customers. All orders must be prepaid with 
exception of books purchased for resale by bookstores and wholesalers. 
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Using History to Teach Mathematics 
Victor Katz, ed ito r 

Series:  MAA Notes 

This book is a collection of articles by international specialists in the 
history of mathematics and its use in teaching, based on presentations 
given at an international conference in 1 996. Although the articles vary 
in technical or educational level and in the level of generality, they 
show how and why an understanding of the history of mathematics is 
necessary for informed teaching of various subjects in the mathematics 
curriculum, both at secondary and at university levels. Many of the 
articles can serve teachers directly as the basis of classroom lessons, 
while others will give teachers plenty to think about in designing 
courses or entire curricula. For example, there are articles dealing with 
the teaching of geometry and quadratic equations to high school 
students, of the notion of pi at various levels, and of linear algebra, 

combinatorics, and geometry to university students. But there is also an article showing how to use historical 
problems in various courses and one dealing with mathematical anomalies and their classroom use. 

Although the primary aim of the book is the teaching of mathematics through its history, some of the articles 
deal more directly with topics in the history of mathematics not usually found in textbooks. These articles will 
give teachers valuable background. They include one on the background of Mesopotamian mathematics by one 
of the world's  experts in this field, one on the development of mathematics in Latin America by a mathematician 
who has done much primary research in this little known field, and another on the development of mathematics 
in Portugal, a country whose mathematical accomplishments are little known. Finally, an article on the reasons 
for studying mathematics in Medieval Islam will give all teachers food for thought when they discuss similar 
questions, while a short play dealing with the work of Augustus DeMorgan will help teachers provide an outlet 
for their class thespians. 

Catalog Code: NTE-5 1/JR 300 pp. , Paperbound, 2000 ISBN 088385- 1 63-6 List: $32.95 MAA Member: $25.95 

Nrume ______________________________ __ Credit Card No. ________________________________ _ 

'------------------------------ Signature'-----------------------� 
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(shipped via UPS): $2.95 for the first book, and $1 .00 for each II:����::: book. Canadian orders: $4.50 for the first book and $1 .50 for each 
book. Canadian orders will be shipped within 10 days of receipt of 

the fastest available route. We do not ship via UPS into Canada 
customer specially requests this service. Canadian customeB who 

UPS shipment will be billed an additional 7% of their total order . 
• (Jver·seas Orders: $3.50 per item ordered for books sent surface mail. 

available at a rate of $7.00 per book. Foreign orders must be paid in 
through a US bank or through a New York clearinghouse. Credit 

• •""' ,urucn are accepted for all customers. All orders must be prepaid with 
the loo:ej:ltion of books purchased for reaale by bookstores and wholesalers. 
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The Contest Problem Book VI 
Leo J. Schneider 

American High School Mathematics Examinations 
(AHSME) 1 989- 1 994 

Series: Anneli Lax New Mathematical Library 

The Contest Problem Book VI chronicles the high school 
competitions sponsored by the Mathematical Association of 
America. It contains 1 80 challenging problems from the six 
years of the American High Scho ol Mathematics 
Examinations (AHSME ) ,  1 989- 1 994, as well as a selection of 
other problems. Many problem solving techniques for 

problems in this book show alternative approaches that appear in print for the first 
time. 

Some aspects of mathematical problem solving unique to competitions are discussed. 
Useful tools are selected from important areas of high school mathematics. 

A Problems Index classifies the 1 80 problems in the book_ into subject areas: Algebra, 
Complex Numbers, Discrete Mathematics, Number Theory, Statistics, and Trigonometry. 
Outstanding problems combine elementary techniques from diverse areas of mathematics. 
You will find problems that really engage your students in this volume. 

Catalog Code: NML-40/JR 232 pp. ,  Paperbound, 2000 ISBN 0-88385-642-5 List: $21 .95 MAA Member: $ 1 7.95 
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book. Canadian orders: $4.50 for the first book and $ 1 .50 for each 
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unless the customer specially requests this service. Canadian customers who 
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• Civerseas <>rde1rs: $3.50 per item ordered for books sent surface mail. Airmail 

service is available at a rate of $7.00 per book. Foreign orders must be paid in 
US dollars through a US bank or through a New York clearinghouse. Credit 
card orders are accepted for all customers. All orders must be prepaid with 
the exception of books purchased for resale by bookstores and wholesalers. 



a The Mathematical Association of America 

Proofs Without Words II: More Exercises in Visual Thinking 

Roger B. Nelsen 
Series: Classroom Resource Materials 

What are "proofs without words?" Many would argue that they 
are not really "proofs" (nor, for that matter, are many "without 
words," on account of equations which often accompany them).  
Like its predecessor Proofs Without Words, published by the 
MAA in 1993, this book is a collection of pictures or diagrams 
that help the reader see why a particular mathematical state­
ment may be true, and also to see how one might begin to go 
about proving it true. The emphasis is on providing visual clues 
to the observer to stimulate mathematical thought. 

Proofs without words have been around for a long time. In this 
volume you find modern renditions of proofs without words 

from ancient China, tenth century Arabia, and Renaissance Italy. While the majority of the proofs 
without words in this book originally appeared in journals published by the MAA, others first 
appeared in journals published by other organizations in the US and abroad, and on the World 
Wide Web. 

The proofs in this collection are arranged by topic into five chapters: geometry and algebra; 
trigonometry, calculus and & analytic geometry; inequaltieis; integer sums, and infinite series & 
linear algebra. Although the proofs without words are presented primarily for the enjoyment of 
the reader, teachers will want to use them with students at many levels - in precalculus courses in 
high school, in college courses in calculus, number theory and combinatorics, and in pre-service 
and in-service classes for teachers. 
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